Skip to main content

Solution of Premixed and Counterflow Diffusion Flame Problems by Adaptive Boundary Value Methods

  • Chapter
Numerical Boundary Value ODEs

Part of the book series: Progress in Scientific Computing ((PSC,volume 5))

Abstract

Combustion models that simulate pollutant formation and study chemically controlled extinction limits in flames often combine detailed chemical kinetics with complicated transport phenomena. Two of the simplest models in which these processes are studied are the premixed laminar flame and the counterflow diffusion flame. In both cases the flow is essentially one-dimensional and the governing equations can be reduced to a set of coupled nonlinear two-point boundary value problems with separated boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dixon-Lewis, G., “Flame Structure and Flame Reaction Kinetics I. Solution of Conservation Equations and Application to Rich Hydrogen-Oxygen Flames,” Proc. Roy. Soc. London, 298A (1967), p. 495.

    Article  Google Scholar 

  2. Dixon-Lewis, G., Fukutani, S., Miller, J. A., Peters, N. and Warnatz, J., “Calculation of the Structure and Extinction Limit of a Methane-Air Counterflow Diffusion Flame in the Forward Stagnation Region of a Porous Cylinder,” to be published in the Twentieth Symposium (International) on Combustion.

    Google Scholar 

  3. Frank, P. M., Introduction to System Sensitivity Theory, Academic Press, New York, (1978).

    MATH  Google Scholar 

  4. Hindmarsh, A. C., “Solution of Block-Tridiagonal Systems of Linear Equations,” Lawrence Livermore Laboratory Report UCID-30150, (1977).

    Google Scholar 

  5. Hirschfelder, J. O. and Curtiss, C. F., “The Theory of Flame Propagation,” J. Chem. Phys., 17 (1949), p. 1076.

    Article  Google Scholar 

  6. Isaacson, E. and Keller, H. B., Analysis of Numerical Methods John Wiley and Sons, Inc., New York, (1972).

    Google Scholar 

  7. Kee, R. J., Miller, J. A. and Jefferson, T. H., “CHEMKIN: A General-Purpose, Transportable, Fortran Chemical Kinetics Code Package,” Sandia National Laboratories Report, SAND80–8003, (1980).

    Google Scholar 

  8. Kee, R. J., Warnatz, J. and Miller, J. A., “A Fortran Computer Code Package for the Evaluation of Gas-Phase Viscosities, Conductivities, and Diffusion Coefficients,” Sandia National Laboratories Report, SAND83–8209, (1983).

    Google Scholar 

  9. Margolis, S. B., “Time-Dependent Solution of a Premixed Laminar Flame, J. Comp. Phys., 27 (1978), p. 410.

    Article  MATH  Google Scholar 

  10. Miller, J. A., Mitchell, R. E., Smooke, M. D. and Kee, R. J., “Toward a Comprehensive Chemical Kinetic Mechanism for the Oxidation of Acetylene: Comparison of Model Predictions with Results from Flame and Shock Tube Experiments,” Nineteenth Symposium (International) on Combustion, Reinhold, New York, (1982) p. 181.

    Google Scholar 

  11. Miller, J. A., Smooke, M. D., Green, R. M. and Kee, R. J., “Kinetic Modeling of the Oxidation of Ammonia in Flames,” Comb. Sci. and Tech., 34 (1983), p. 149.

    Article  Google Scholar 

  12. Miller, J. A., Kee, R. J., Smooke, M. D. and Grcar, J. F., “The Computation of the Structure and Extinction Limit of a Methane-Air Stagnation Point Diffusion Flame,” paper presented at the 1984 Spring Meeting of the Western States Section of the Combustion Institute, Boulder, CO.

    Google Scholar 

  13. Peters, N., “Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion,” to be published in Progress in Energy and Combustion Science.

    Google Scholar 

  14. Smooke, M. D., “Numerical Solution of Burner Stabilized Premixed Laminar Flames by Boundary Value Methods,” J. Comp. Phys., 48 (1982), p. 72.

    Article  MATH  Google Scholar 

  15. Smooke, M. D., Miller, J. A. and Kee, R. J., “Numerical Solution of Burner Stabilized Premixed Laminar Flames by an Efficient Boundary Value Method,” Numerical Methods in Laminar Flame Propagation, N. Peters and J. Warnatz (Eds.), Friedr. Vieweg and Sohn, Wiesbaden, (1982).

    Google Scholar 

  16. Smooke, M. D., Miller, J. A. and Kee, R. J., “On the Use of Adaptive Grids in Numerically Calculating Adiabatic Flame Speeds,” Numerical Methods in Laminar Flame Propagation, N. Peters and J. Warnatz (Eds.), Friedr. Vieweg and Sohn, Wiesbaden, (1982).

    Google Scholar 

  17. Smooke, M. D., Miller, J. A. and Kee, R. J., “Determination of Adiabatic Flame Speeds by Boundary Value Methods,” Comb. Sci. and Tech., 34 (1983), p. 79.

    Article  Google Scholar 

  18. Smooke, M. D., “An Error Estimate for the Modified Newton Method with Applications to the Solution of Nonlinear Two-Point Boundary Value Problems,” J. Opt. Theory and Appl., 39 (1983), p. 489.

    Article  MathSciNet  MATH  Google Scholar 

  19. Smooke, M. D. and Mattheij, R. M. M., “On the Solution of Nonlinear Two-Point Boundary Value Problems on Successively Refined Grids,” to appear.

    Google Scholar 

  20. Spalding, D. B., “The Theory of Flame Phenomena with a Chain Reaction,” Phil. Trans. Roy. Soc. London, 249A (1956), p. 1.

    Article  Google Scholar 

  21. Streng, A. G. and Grosse, A. V., “The Oxygen to Ozone Flame,” Sixth Symposium (International) on Combustion, Reinhold, New York, (1957), p. 264.

    Google Scholar 

  22. Tsuji, H. and Yamaoka, I., “The Counterfiow Diffusion Flame in the Forward Stagnation Region of a Porous Cylinder,” Eleventh Symposium (International) on Combustion, Reinhold, New York, (1967), p. 979.

    Google Scholar 

  23. Tsuji, H. and Yamaoka, I., “The Structure of Counterfiow Diffusion Flames in the Forward Stagnation Region of a Porous Cylinder,” Twelfth Symposium (International) on Combustion, Reinhold, New York, (1969), p. 997.

    Google Scholar 

  24. Tsuji, H. and Yamaoka, I., “Structure Analysis of Counterfiow Diffusion Flames in the Forward Stagnation Region of a Porous Cylinder,” Thirteenth Symposium (International) on Combustion, Reinhold, New York, (1971), p. 723.

    Google Scholar 

  25. Tsuji, H., “Counterfiow Diffusion Flames,” Progress in Energy and Comb., 8, (1982), p. 93.

    Article  MathSciNet  Google Scholar 

  26. Warnatz, J., “Calculation of the Structure of Laminar Flat Flames III; Structure of Burner-Stabilized Hydrogen-Oxygen and Hydrogen-Fluorine Flames,” Ber. Bunsen-ges. Phys. Chem., 82, (1978), p. 834.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Birkhäuser Boston, Inc.

About this chapter

Cite this chapter

Smooke, M.D., Miller, J.A., Kee, R.J. (1985). Solution of Premixed and Counterflow Diffusion Flame Problems by Adaptive Boundary Value Methods. In: Ascher, U.M., Russell, R.D. (eds) Numerical Boundary Value ODEs. Progress in Scientific Computing, vol 5. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-5160-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5160-6_18

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-9590-7

  • Online ISBN: 978-1-4612-5160-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics