Protocol guidelines for the investigations of photochemical fate of pesticides in water, air, and soils

  • Ghulam Ghaus Choudhry
  • G. R. Barrie Webster
Part of the Residue Reviews book series (RECT, volume 96)


Pesticides represent an increasingly important sort of synthetic chemical introduced into the environment through human activity. A compound is important in environmental chemistry provided it has (or shows evidence of having) the following characteristics (Choudhry et al. 1979a):
  • produced or distributed in large quantity

  • high likelihood of entry into the environment — dispersion tendency (transport)

  • persistence (lack of degradation under biotic and abiotic conditions)

  • bio-accumulation (concentration effects, e.g., in the food chain or by other mechanisms)

  • significant toxicity and related biological effects


Quantum Yield Wavelength Interval Direct Photolysis Photolysis Rate Protocol Guideline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Malik, M. M., and P De Mayo, Surface photochemistry, The amide Photo-Fries rearrangement. Can. J. Chem. 62, 1275 (1984).CrossRefGoogle Scholar
  2. Benson, S. W., Thermochemical Kinetics, Second Edition. New York, Wiley-Interscience (1976)Google Scholar
  3. Blazejowski, J., and J. Szychlinski, 1,4-Dioxane as a solvent in spectroscopy and photochemistry. Anal. Chim. Acta 159, 369 (1984).CrossRefGoogle Scholar
  4. Buch, R. R., T. H. Land, R. B. Annelin, and C. L. Frye, Photolytic oxidative demethylation of aqueous dimethylsiloxanols. Environ. Toxicol. Chem. 3, 215 (1984).CrossRefGoogle Scholar
  5. Bunce, N. J., Photolysis of 2-chlorobiphenyl in aqueous acetonitrile. Chemosphere 8, 653 (1978).CrossRefGoogle Scholar
  6. Burkhard, N., and J. A. Guth, Photolysis of organophosphorus insecticides on soil surfaces. Pestic. Sci. 10, 313 (1979).CrossRefGoogle Scholar
  7. Calvert, J. G., and J. N. Pitts, Photochemistry. New York, Wiley (1966).Google Scholar
  8. Chen, Z. M., M. J. Zabik, and R. A. Leavitt, Comparative study of thin film photodegradative rates for 36 pesticides. Ind. Eng. Chem. Prod. Res. Dev. 23, 5 (1984).CrossRefGoogle Scholar
  9. Choudhry, G. G., Humic substances. Part II. Photophysical, photochemical and free radical characteristics. Toxicol. Environ. Chem. 4, 261 (1981).CrossRefGoogle Scholar
  10. Choudhry, G. G., Humic Substances, Structural, Photophysical, Photochemical and Free Radical Aspects and Interactions with Environmental Chemicals (pp. 158–159 ). New York, Gordon and Breach Sci. Publ. (1984a).Google Scholar
  11. Choudhry, G. G., Photophysical and photochemical properties of soil and aquatic humic materials. Residue Rev. 92, 59 (1984b).Google Scholar
  12. Choudhry, G. G., Humic Substances, Structural Aspects and Photophysical, Photochemical and Free Radical Characteristics. In O. Hutzinger (ed.): The Handbook of Environmental Chemistry, Vol. 1, Part C., pp. 1–24. Berlin, Springer-Verlag (1984 c).Google Scholar
  13. Choudhry, G. G., and O. Hutzinger, Acetone sensitized and non-sensitized photolysis of tetra-, penta-, and hexachlorobenzenes in acetonitrile-water mixtures, Photoisomerization and formation of several products including polychlorobiophenyls. Environ. Sci. Technol. 18, 235 (1984).CrossRefGoogle Scholar
  14. Choudhry, G. G., and G. R. B. Webster, Environmental photochemistry of PCDDs. Part I. Kinetics and quantum yields of the photodegradation of 1,2,3,4,7-penta- and 1,2,3,4,7,8-hexachlorodibenzo p-dioxin in aqueous acetonitrile. Chemosphere 14, 9 (1985).CrossRefGoogle Scholar
  15. Choudhry, G. G., J. A. van den Broeck, and O. Hutzinger, Formation of polychlorodibenzofurans (PCDFs) by the photolysis of polychlorobenzenes (PCBZs) in aqueous acetonitrile containing phenols. Chemosphere 12, 487 (1983).CrossRefGoogle Scholar
  16. Choudhry, G. G., J. A. van den Broeck, G. R. B. Webster, and O. Hutzinger, Photochemical incorporations of polychlorobenzenes into some humic model monomers. Submitted to Environ. Toxicol Chem. (1985).Google Scholar
  17. Choudhry, G. G., A. A. M. Roof, and O. Hutzinger, Mechanisms in sensitized photochemistry of environmental chemicals. Toxicol. Environ. Chem. 2, 259 (1979 a).CrossRefGoogle Scholar
  18. Choudhry, G. G., A. A. M. Roof, and O. Hutzinger, Photochemistry of halogenated benzenes derivatives. I. Trichlorobenzenes, Reductive dechlorination, isomerization and formation of polychlorobiphenyls. Tetrahedron Lett. 2059 (1979 b).Google Scholar
  19. Choudhry, G. G., A. A. M. Roof, and O. Hutzinger, Photochemistry of halogenated benzene derivatives. Part 2. Photoreactions of α-substituted p-chlorotoluenes. J. Chem. Soc. Perkin Trans. I, 2957 (1982).Google Scholar
  20. Choudhry, G. G., G. Sundstrom, L. O. Ruzo, and O. Hutzinger, Photochemistry of chlorinated diphenyl ethers. J. Agric. Food Chem. 25, 1371 (1977 a).CrossRefGoogle Scholar
  21. Choudhry, G. G., G. Sundstrom, F W. M. van der Wielen, and O. Hutzinger, Synthesis of dibenzofurans by photolysis of chlorinated diphenyl ethers in acetone solution. Chemosphere 6, 327 (1977 b).CrossRefGoogle Scholar
  22. Cooper, W. J., and R. G. Zika, Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight. Science 220, 711 (1983).PubMedCrossRefGoogle Scholar
  23. Cox, R. A., R. G. Derwent, and M. R. Williams, Atmospheric photooxidation reactions. Rates, reactivity and mechanism for reaction of organic compounds with hydroxyl radicals. Environ. Sci. Technol. 14, 57 (1980).CrossRefGoogle Scholar
  24. Crosby, D. G., Experimental approaches to pesticide photodecomposition. Residue Rev. 25, 1 (1969).PubMedGoogle Scholar
  25. Crosby, D. G., and K. W. Moilanen, Vapor-phase photodecomposition of aldrin and dieldrin. Arch. Environ. Contamin. Toxicol. 2, 62 (1974).CrossRefGoogle Scholar
  26. Crosby, D. G., and A. S. Wong, Environmental degradation of 2,3,7,8-tetrachlorodibenzo p-dioxin (TCDD). Science 195, 1337 (1977).PubMedCrossRefGoogle Scholar
  27. Demayo, P., and H. Shizuka, In W. R. Ware (ed.): Creation and detection of the excited state, Vol. 4, Chapt. 4. New York, Marcel Dekker (1976).Google Scholar
  28. Dilling, W. L., C. J. Bredeweg, and N. B. Tefertiller, Simulated atmospheric photodecomposition rates of methylene chloride, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, and other compounds. Environ. Sci. Technol. 10, 351 (1976).CrossRefGoogle Scholar
  29. Dilling, W. L., L. C. Lickly, T. D. Lickly, and P. G. Murphy, Organic photochemistry. 19. Quantum yields for o,o-diethyl-0-(3,5,6-Trichloro-2-pyridinyl) phosphorothioate (Chlorpyrifos) and 3,5,6-trichloro-2-pyridinol in dilute aqueous solutions and their environmental phototransformation rates. Environ. Sci. Technol. 18, 540 (1984).CrossRefGoogle Scholar
  30. Draper, W. M., and D. G. Crosby, Hydrogen peroxide and hydroxyl radical, Intermediates in indirect photolysis reactions in water. J. Agric. Food Chem. 29, 699 (1981).CrossRefGoogle Scholar
  31. Draper, W. M., and D. G. Crosby, The photochemical generation of hydrogen peroxide in natural waters. Arch. Environ. Contam. Toxicol. 12, 121 (1983).CrossRefGoogle Scholar
  32. Draper, W. M., and D. G. Crosby, Solar photooxidation of pesticides in dilute hydrogen peroxide. J. Agric. Food Chem. 32, 231 (1984).CrossRefGoogle Scholar
  33. Dulin, D., and T. Mill, Development and evaluation of sunlight actinometers. Environ. Sci. Technol. 16, 815 (1982).CrossRefGoogle Scholar
  34. Fisher, G. J., J. C. Leblanc, and H. E. Johns, A calorimetric determination of the quantum yield for the ionization of malachite green cyanide by ultraviolet radiation. Photochem. Photobiol. 6, 757 (1967).CrossRefGoogle Scholar
  35. Gab, S., S. Nitz, H. Parlar, and F Korte, Photomineralisation of certain aromatic xenobiotica, Chemosphere 5, 251 (1975).CrossRefGoogle Scholar
  36. Gebefugi, I., R. Baumann, and F Korte, Photochemischer abbau von 2,3,7,8-tetrachlorodibenzo p-dioxin (TODD) unter simulierten unweltbedingungen. Naturwissenschaften 64, 486 (1977).CrossRefGoogle Scholar
  37. Gohre, K., and G. C. Miller, Singlet oxygen generation on soil surfaces. J. Agric. Food Chem. 31, 1104 (1983).CrossRefGoogle Scholar
  38. Guth, J. A., Experimental approaches to studying the fate of pesticides in soil. In D. H. Hutson and T. R. Roberts (eds.): Progress in Pesticide Biochemistry, Chapt. 2, pp. 85–114. New York, Wiley.Google Scholar
  39. Hanst, P. L., and B. W. Gay Jr., Photochemical reactions among formaldehyde, chlorine and nitrogen dioxide in air. Environ. Sci. Technol. 11, 1105 (1977).CrossRefGoogle Scholar
  40. Helling, L. S., and B. C. Turner, Pesticide mobility, Determination by soil thin layer chromatography. Science 162, 562 (1968).PubMedCrossRefGoogle Scholar
  41. Hendry, D. G., Atmospheric Chemistry. In laboratory protocols for evaluating the fate of organic chemicals in air and water, by T. Mill, W. R. Mabey, D. C. Bomberger, D. C. Chou, and J. H. Smith. EPA-600/3-82-022, Chapter 5, pp. 139–209 (1982).Google Scholar
  42. Holmes, J. R., R. J. O’Brien, J. H. Crabtree, T. A. Hecht, and J. H. Seinfeld, Measurement of ultraviolet radiation intensity in photochemical smog studies. Environ. Sci. Technol. 7, 519 (1973).CrossRefGoogle Scholar
  43. Howard, C. J., and K. M. Evenson, Rate constants for the reactions of OH with CH4 and fluorine, chlorine, and bromine substitued methane at 296 K. J. Chem. Phys. 64, 197 (1976 a).CrossRefGoogle Scholar
  44. Howard, C. J., and K. M. Evenson, Rate constants for the reactions of OH with ethane and some halogen substituted ethanes at 296 K. J. Chem. Phys. 64, 4303 (1976 b).CrossRefGoogle Scholar
  45. Howard, P H., J. Saxena, and H. Sikka, Determining the fate of chemicals. Environ. Sci. Technol. 12, 398 (1978).CrossRefGoogle Scholar
  46. Ivie, G. W., and J. E. Casida, Enhancement of photoalteration of cyclodiene insecticide chemical residues by rotenone. Science 167, 1620 (1970).PubMedCrossRefGoogle Scholar
  47. Ivie, G. W., and J. E. Casida, Sensitized photodecomposition and photosensitizer activity of pesticide chemicals exposed to sunlight on silica gel chromatoplates. J. Agric. Food Chem. 19, 405 (1971 a).CrossRefGoogle Scholar
  48. Ivie, G. W., and J. E. Casida, Photosensitizers for the accelerated degradation of chlorinated cyclodienes and other insecticide chemicals exposed to sunlight on bean leaves. J. Agric. Food chem. 19, 410 (1971 b).CrossRefGoogle Scholar
  49. Kramer, H. E. A., and A. Maute, Sensitized photooxygenation, Change from type I (radical) to type II (singlet oxygen). Photochem. Photobiol. 17, 413 (1973).CrossRefGoogle Scholar
  50. Klehr, M., J. Iwan, and J. Riemann, An experimental approach to the photolysis of pesticides adsorbed on soil, Thidiazuron-Pestic. Sci. 14, 359 (1983).Google Scholar
  51. Koller, L. R., Ultraviolet Radiation. 2nd ed., p. 105. New York, Wiley (1965).Google Scholar
  52. Lamola, A. A., and G. S. Hammond, Intersystem crossing efficiencies. J. Chem. Phys. 41, 2129 (1965).CrossRefGoogle Scholar
  53. Leermaker, L. A., H. T. Thomas, L. D. Weis, and F. C. James, Spectra and photochemistry of molecules adsorbed on silica gel. IV. J. Am. Chem. Soc. 88, 5075 (1966).CrossRefGoogle Scholar
  54. Leighton, P. A., Photochemistry of Air Pollution. New York, Academic Press. (1961).Google Scholar
  55. Lemaire, J., I. Campbell, H. Hulpke, J. A. Guth, W. Merz, J. Philp, and C. von Waldow An assessment of test methods for photodegradation of chemicals in the environment. Chemosphere 11, 119 (1982).CrossRefGoogle Scholar
  56. Liang, T. T., and E. P. Lichtenstein, Effects of soil and leaf surfaces on the photodecomposition of [14C] azinphosmethyl. J. Agric. Food Chem. 24, 1205 (1976).PubMedCrossRefGoogle Scholar
  57. Mabey, W. R., T. Mill, and D. G. Hendry, Photolysis in water. In Laboratory Protocols for Evaluating the Fate of Organic Chemicals in Air and Water, by T. Mill, W. R. Mabey, D. C. Bomberger, D. C. Chou, and J. H. Smith. EPA-600/3-8-022, Chapter 3, pp. 49–102 (1982).Google Scholar
  58. McCall, P. J., D. A. Laskowski, R. L. Swann, and H. J. Dishburger, Measurement of sorption coefficient of organic chemicals and their use in environmental fate analysis. In Test Protocols for Environmental Fate and Movement of Toxicants. AOAC. Arlington, VA 22209, pp. 89–109 (1981).Google Scholar
  59. Mill, T., D. Dulin, and J. Davenport, Development and evaluation of sunlight actinometers. EPA Report (Draft) EPA Contract 68-01-6325 (1981 b).Google Scholar
  60. Mill, T., W. R. Mabey, D. G. Hendry, J. Winterle, J. Davenport, V. Barich, D. Dulin, and D. Tse, Design and validation of screening and detailed methods for environmental processes EPA (1982). Cited in Photolysis in Aqueous Solution in Sunlight, Office of Toxic Substances, Office of Pesticides and Toxic Substances, U.S. Environmental Protection Agency, Washington, DC, CS-6000, October 1983.Google Scholar
  61. Mill, T., W. R. Mabey, B. Y. Lan, and A. Baraze, Chemosphere 10, 1281 (1981 a).CrossRefGoogle Scholar
  62. Miller, G. C., Unpublished work, University of Nevada, Reno (1981); cited in Miller and Zepp, 1983.Google Scholar
  63. Miller, G. C., and R. G. Zepp, Extrapolating photolysis rates from the laboratory to the environment. Residue Rev. 85, 89 (1983).Google Scholar
  64. Miller, G. C., M. J. Millie, D. G. Crosby, S. Sontum, and R. G. Zepp, Photolysis of 3,4-dichloroaniline in water. Tetrahedron 33, 1797 (1979).CrossRefGoogle Scholar
  65. Mikami, N., K. Imanishi, H. Yamada, and J. Miyamoto, Photodegradation of the funigicide tolclofos-methyl in water and on soil surface. J. Pesticide Sci. 9, 215 (1984).CrossRefGoogle Scholar
  66. Moore, W. J., Physical Chemistry. First edition, pp. 334–337. New York, Longman (1972).Google Scholar
  67. Murov, S. L., Handbook of Photochemistsry. New York, Marcel Dekker (1973).Google Scholar
  68. Nestrick, T. J., L. L. Lamparski, and D. I. Townsend, Identification of tetrachlorodibenzo p-dioxin isomers at 1 ng level by photolytic degradation and pattern recognition techniques. Anal. Chem. 52, 1865 (1980).CrossRefGoogle Scholar
  69. Nilles, G. P, and M. J. Zabik, Photochemistry of bioactive compounds. Multiphase photodegradation of Basalin. J. Agric. Food Chem. 22, 684 (1974).PubMedCrossRefGoogle Scholar
  70. OECD, Guidelines for Testing of Chemicals. Guidelines #106, Adsorption/Desorption (1981).Google Scholar
  71. Parlar, H., Photochemistry at surfaces and interphases. In O. Hutzinger (ed.): The Handbook of Environmental Chemistry, Vol. 2, Part A, pp. 145–159. Berlin, SpringerVerlag (1980).Google Scholar
  72. Perry, R. A., R. Atkinson, and J. N. Pitts, Jr., Kinetics and mechanism of the gas phase reaction of OH radicals with aromatic hydrocarbons over the temperature range 296–473 K. J. Phys. Chem. 81, 296 (1977).CrossRefGoogle Scholar
  73. Peterson, J. T., Calculated actinic fluxes (290-700 nm) for air pollution photochemistry applications. EPA-600/4-76-025 (1976).Google Scholar
  74. Pitts, J. N., Jr., J. M. Veronon, and J. K. S. Wan, A rapid actinometer for photochemical air pollution studies. Internat. J. Air Poll. 6, 757 (1975).Google Scholar
  75. Pitts, J. N., Jr., A. M. Winer, D. R. Fitz, A. K. Knudsen, and R. Atkinson, Experimental protocol for determining absorption cross section of organic chemicals. EPA-600/3-81-051 (1981).Google Scholar
  76. Plimmer, J. R., and U. I. Klingebiel, Photolysis of hexachlorobenzene. J. Agric. Food Chem. 24, 721 (1976).PubMedCrossRefGoogle Scholar
  77. Plum, C. N., E. Sanhueza, R. Atkinson, W. P. L. Carter, and J. N. Pitts, Jr., OH radical rate constants and photolysis rate of α-dicarbonyls. Environ. Sci. Technol. 17, 479 (1983).CrossRefGoogle Scholar
  78. Ravishankra, A. R., W. Wagner, S. Fischer, G. Smiter, R. Schiff, R. T. Watson, G. Testi, and D. D. Davis, A kinetic study of the reactions of OH with several aromatic and olefinic compounds. Intern. J. Chem. Kinet. 10, 783–804 (1978).CrossRefGoogle Scholar
  79. Roof, A. A. M., Aquatic Photochemistry. In O. Hutzinger (ed.), The Handbook of Environmental Chemistry, Vol. 2, Part B, pp. 43–72. Berlin, Springer-Verlag (1982).Google Scholar
  80. Rosen, J. D., and W. F. Carey, Preparation of the photoisomers of aldrin and dieldrin. J. Agric. Food Chem. 16, 536 (1968).CrossRefGoogle Scholar
  81. Shibuya, K., T. Nagashima, S. Imai, and H. Akimoto, Photochemical ozone formation in the irradiation of ambient air samples by using a mobile smog chamber. Environ. Sci. Technol. 15, 661 (1981).CrossRefGoogle Scholar
  82. Smith, C. A., Y Iwata, and F. A. Gunther, Conversion and disappearance of methidathion on thin layers of dry soil. J. Agric. Food Chem. 26, 959 (1978).CrossRefGoogle Scholar
  83. Smith, J. H., W. R. Mabey, N. Bohonos, B. R. Holt, S. S. Lee, T. W. Chou, D. C. Bomberger, and T. Mill, Environmental Pathways of Selected Chemicals in Freshwater Systems. Part I, Background and Experimental Procedures. U.S. EPA-600/ 7-77-113 (1977).Google Scholar
  84. Tuazon, E. C., W. P L. Carter, A. M. Winer, and J. N. Pitts, Jr., Reactions of hydrazines with ozone under simulated atmospheric conditions. Environ. Sci. Technol. 15, 823 (1981).CrossRefGoogle Scholar
  85. Veslay, G. F., Complications in measuring quantum yields using cylindrical sample cells. Mol. Photochem. 3, 193 (1971).Google Scholar
  86. Walling, C., Fenton’s reagent revisited. Acc. Chem. Res. 8, 125 (1975).CrossRefGoogle Scholar
  87. Wells, C. H. J., Introduction to Molecular Photochemistry, pp. 34–58. London, Chapman and Hall (1972).Google Scholar
  88. Winer, A. M., R. A. Graham, G. J. Doyle, P J. Bekowies, J. M. McAfee, and J. N. Pitts, Jr., An evacuable environmental chamber and solar simulator factility for the study of atmospheric photochemistry. Adv. Environ. Sci. Technol. 10, 461 (1980).Google Scholar
  89. Woodrow, J. E., D. G. Crosby, and J. N. Seiber, Vapor-phase photochemistry of pesticides. Residue Rev. 85, 111 (1983).Google Scholar
  90. Zafiriou, O. C., J. Joussot-Dubien, R. G. Zepp, and R. G. Zika, Photochemistry of natural waters, Many compounds and environments are affected by sunlight-induced photochemistry. Environ. Sci. Technol. 18, 358A (1984).CrossRefGoogle Scholar
  91. Zepp, R. G., Experimental approaches to environmental photochemistry. In O. Hutzinger (ed.), The Handbook of Environmental Chemistry, Vol. 2, Part B, pp. 19–44. Berlin, Springer-Verlag (1982).Google Scholar
  92. Zepp, R. G., and G. L. Baughman, Prediction of photochemical transformation of pollutants in the aquatic environment. In O. Hutzinger, I. H. von Lelyveld, and B. C. S. Zoetman (eds.): Aquatic Pollutants, Transformation and Biological Effects, p. 237. New York, Pergamon Press (1978).Google Scholar
  93. Zepp, R. G., and D. M. Cline, Rates of direct photolysis in aquatic environment. Environ. Sci. Technol. 11, 359 (1977).CrossRefGoogle Scholar
  94. Zepp, R. G., G. L. Baughman, and P F. Schlotzhauer, Comparison of photochemical behavior of various humic substances in water, II. Photosensitised oxygenations. Chemosphere 10, 119 (1981).CrossRefGoogle Scholar
  95. Zepp, R. G., P F. Schlotzhauer, and R. M. Sink, Photosensitized transformations involving electron energy transfer in natural waters, Rate of humic substances. Environ. Sci. Technol. 19, 74 (1985).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1985

Authors and Affiliations

  • Ghulam Ghaus Choudhry
    • 1
  • G. R. Barrie Webster
    • 1
  1. 1.Pesticide Research Laboratory, Department of Soil ScienceUniversity of ManitobaWinnipegCanada

Personalised recommendations