Moth control in stored grain and the role of Bacillus thuringiensis: An overview

  • Bh. Subramanyam
  • L. K. Cutkomp
Conference paper
Part of the Residue Reviews book series (RECT, volume 94)

Abstract

Insects, among other biological agents like fungi, bacteria, and rodents, attack stored grains leading to losses in quantity and quality. On a worldwide basis 13 million tons of stored food grains are lost annually to insect deprations (Hall 1970). In the United States a USDA report (Anon. 1981) estimated annual storage losses of corn, wheat, barley, sorghum, and oats due to insects during 1950–1960 to be about 324.50 million bushels; the annual monetary loss during the same period being approximately $454 million. Therefore, reduction of loss and deterioration of stored grains by insects is necessary for maximum utilization of the food commodity.

Keywords

Toxicity Egypt Bran Benz Lindane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Kader, M. H. K., G. R. B. Webster, W. R. Loschiavo, and F. L. Watters: Low temperature degradation of malathion in stored wheat. J. Econ. Entomol. 73, 654 (1980).Google Scholar
  2. Afify, A. M.: Bioassay of “Biospore 2802” using two species of Lepidopterous larvae of different susceptibility levels. J. Invertbr. Pathol. 10, 283 (1968).Google Scholar
  3. Afify, A. M.: Effect of storage of Bactospeine under varying room conditions on the viability and virulence of the spores. Entomophaga 14, 215 (1969 a).Google Scholar
  4. Afify, A. M., and M. M. Matter: Retarded effect of Bacillus thuringiensis Berliner on the fecundity of Anagasta kuehniella (Zell.). Entomophaga 14, 447 (1969 b).Google Scholar
  5. Afify, A. M., M. M. Altahtaway, S. El-Sawaf, M. E. Habib, and S. M. Hammad: Biotrol BTB Process 183, an effective biobacterial preparation on the histology of the fifth instar larvae of Anagasta kuehniella Zeller. Z. ang. Ent. 65, 49 (1970 a).Google Scholar
  6. Afify, A. M., M. M. Altahtaway, S. El-Sawaf, M. E. Habib, and S. M. Hammad: Pathogenecity tests of Biotol BTB Process 183 on Anagasta kuehniella Zeller. Z. ang. Ent. 65, 29 (1970 b).Google Scholar
  7. Afify, A. M., S. El-Sawaf, S. Hammad, and M. E. Habib: Increase of tolerance to bacterial insecticides with larval development of Anagasta kuehniella Zell. in relation to its microbial control. Z. ang. Ent. 65, 14 (1970 c).Google Scholar
  8. Afify, A. M., and M. M. Matter: Interacting effect of Bacillus thuringiensis and moisture content in diet on the duration and mortality of immature stages of Anagasta kuehniella Zell. Z. ang. Ent. 66, 284 (1970 d).Google Scholar
  9. Afify, A. M., M. Hafez, and M. M. Matter: The retarding effect of Bacillus thuringiensis on larval development of flour moth, Anagasta kuehniella, with a new method of determining the duration of instars. Acta Entomologica Bohemoslav 68, 6 (1971).Google Scholar
  10. Amonkar, S. V., A. K. Pal, L. Vijayalakshmi, and A. S. Rao: Microbial control of potato tuber moth (Phthorimaea operculella Zell.). Indian J. Expt. Biol. 17, 1127 (1979).Google Scholar
  11. Amos, T. G., P. W. C. Evans, and R. E. Johns: Space treatment in a dried fruit warehouse using dichlorvos. Gen. Applied Entomol. 12, 5 (1980).Google Scholar
  12. Angus, T. A.: Association of toxicity with protein-crystalline inclusions of Bacillus sotto Ishiwata. Can. J. Microbiol. 2, 122 (1956).PubMedGoogle Scholar
  13. Angus, T. A., and P. Lüthy: Formulation of microbial insecticides. In H. D. Bulges and N. W. Hussey (eds.): Microbial control of insects and mites. New York: Academic Press (1971).Google Scholar
  14. Anonymous.: Stored-grain insects. USDA Agriculture Handbook No. 500 (1980).Google Scholar
  15. Anonymous.: Report to the congress of the United States. Farmer-owned grain reserve program needs modification to improve effectiveness. Vol. I. CED-81-70: U.S. General Accounting Office (1981).Google Scholar
  16. Anonymous.: Oilseed rape. United Kingdom Ministry of Agriculture, Fisheries, and Food. Booklet No. 2278 (1983).Google Scholar
  17. Ardley, J. H.: Synergized bioresmethrin as a potential grain protectant. J. Stored Prod. Res. 12, 253 (1976).Google Scholar
  18. Armstrong, J. W., and E. L. Soderstrom: Malathion resistance in some populations of the Indian meal moth infesting dried fruits and tree nuts in California. J. Econ. Entomol. 68, 505 (1975).Google Scholar
  19. Attia, F. I.: Insecticide resistance in Cadra cautella in New South Wales, Australia. J. Econ. Entomol. 69, 773 (1976).Google Scholar
  20. Attia, F. I.: Insecticide resistance in Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) in New South Wales, Australia. J. Aust. Entomol. Soc. 16, 149 (1977).Google Scholar
  21. Attia, F. I., E. Shipp, and G. J. Shanahan: Survey of insecticide resistance in Plodia interpunctella (Hübner), Ephestia cautella (Walker), and Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) in New South Wales. J. Aust. Entomol. Soc. 18, 67 (1979).Google Scholar
  22. Attia, F. I., G. J. Shanahan, and E. Shipp: Synergism studies with organophosphorous resistant strains of the Indianmeal moth. J. Econ. Entomol. 73, 184 (1980).Google Scholar
  23. Attia, F. I., E. Shipp, and G. J. Shanahan: Inheritance of resistance to malathion, DDT, and dieldrin in Plodia interpunctella (Lepidoptera: Pyralidae). J. Stored Prod. Res. 17, 109 (1981).Google Scholar
  24. Atwa, W. A., and H. A. Abdel-Rahman: Histopathological effects of Bacillus thuringiensis Berl. on larvae of Pieris rapae (L.) (Lepidoptera: Pieridae). Z. ang. Ent. 76, 326 (1974).Google Scholar
  25. Bansode, P. C., W. V. Campbell, and L. A. Nelson: Toxicity of four organophosphorus insecticides to a malathion-resistant strain of the Indianmeal moth in North Carolina. J. Econ. Entomol. 74, 382 (1981).Google Scholar
  26. Barak, A. V., and P. K. Harein: Unpredictable penalties at time of sale applied to insect infested farm-stored grain in Minnesota. Bull. Entomol. Soc. Amer. 27, 166 (1981).Google Scholar
  27. Baskaran, P., and P. Sekhar: Compatibility studies on Dipel (Bacillus thuringiensis Berliner) with certain synthetic insecticides. Madras J. Agr. 63, 565 (1976).Google Scholar
  28. Beeman, R. W., W. E. Speirs, and B. A. Schmidt: Malathion resistance in Indianmeal moths (Lepidoptera: Pyralidae) infesting stored corn and wheat in the North-Central United States. J. Econ. Entomol. 75, 950 (1982).Google Scholar
  29. Beeman, R. W., and B. A. Schmidt: Biochemical and genetic aspects of malathion-specific resistance in the Indianmeal moth (Lepidoptera: Pyralidae). J. Econ. Entomol. 75, 945 (1982).Google Scholar
  30. Bell, C. H. : Effect of cultural factors on the development of four stored-product moths. J. stored Prod. Res. 12, 185 (1976 a).Google Scholar
  31. Bell, C. H. : The tolerance of immature stages of four stored product moths to methyl bromide. J. stored Prod. Res. 12, 1 (1976 b).Google Scholar
  32. Bell, C. H. : The tolerance of developmental stages of four stored product moths to phosphine. J. stored Prod. Res. 12, 77 (1976 c).Google Scholar
  33. Bell, C. H. : Factors governing the induction of diapause in Ephestia elutella and Plodia interpunctella (Lepidoptera). Physiol. Entomol. 1, 83 (1976 d).Google Scholar
  34. Bell, C. H. : Toxicity of phosphine to the diapausing stages of Ephestia elutella, Plodia interpunctella and other Lepidoptera. J. stored Prod. Res. 13, 149 (1977 a).Google Scholar
  35. Bell, C. H. : Tolerance of the diapausing stages of four species of Lepidoptera to methyl bromide. J. stored Prod. Res. 13, 119 (1977 b).Google Scholar
  36. Bell, C. H.: Effect of temperature on the toxicity of low concentrations of methyl bromide to diapausing larvae of the warehouse moth, Ephestia elutella (Hübner). Pest. Sci. 9, 529 (1978).Google Scholar
  37. Bell, C. H., and V. Glanville: The effect of concentration and exposure in tests with bromide and with phosphine on diapausing larvae of Ephestia elutella (Hübner) (Lepidoptera: Pyralidae). J. Stored Prod. Res. 9, 165 (1973).Google Scholar
  38. Bene, G. D., and P. G. Melis: Histopathology of Bacillus thuringiensis Berliner on larvae of Anagasta kuehniella Zeller. Redia 63, 19 (1980).Google Scholar
  39. Bengston, M., M. Connell, R. A. H. Davies, J. M. Desmarchelier, M. P. Phillips, J. T. Snelson, and R. Sticka: Fenithrothion plus (lR)-phenothrin, and pirimiphos-methyl plus carbaryl, as grain protectant combinations for wheat. Pest. Sci. 11, 471 (1980).Google Scholar
  40. Benz, G.: Synergism of microorganisms and chemical insecticides. In H. D. Burges and N. W. Hussey: Microbial control of insects and mites. New York: Academic Press (1971).Google Scholar
  41. Berliner, E.: Uber die Schlaffsucht der Mehlmottenraupe (Ephestia kuehniella Zell.) und ihren Erreger Bacillus thuringiensis n sp. Z. ang. Ent. 2, 29 (1915).Google Scholar
  42. Bitran, E. A., and D. A. Oliveira: Corcyra cephalonica (Stainton, 1865) (Lepidoptera, Galleriidae) as a pest of stored processed coffee. Arquivos do Instituto Biologicó 45, 153 (1978).Google Scholar
  43. Bond, E. J., and C. T. Buckland: Development of resistance of carbon dioxide in the granary weevil. J. Econ. Entomol. 72, 770 (1979).Google Scholar
  44. Briese, D. T.: Resistance of insect species to microbial pathogens. In E. W. Davidson (ed.): Pathogenesis of invertebrate microbial diseases. New Jersey: Allanheld, Osmun & Co. (1981).Google Scholar
  45. Brown, W. B., and H. K. Heseltine: The effect on flour fumigated with methyl bromide. Slough, Bucks, England: Pest. Infest. Res. Rep. (1962).Google Scholar
  46. Buchelos, C. T.: Moth populations at a typical flour mill. Annales de l ’ Institut Phytopathologique Benaki 12, 188 (1980).Google Scholar
  47. Burgerjon, A., and D. Martouret: Determination and significance of the host spectrum of Bacillus thuringiensis. In H. D. Burges and N. W. Hussey (eds.): Microbial control of insects and mites. New York: Academic Press (1971).Google Scholar
  48. Burges, H. D.: Insect pathogens and microbial control of insects in stored products. I. Test with Bacillus thuringiensis Berliner against moths. Entomophaga Mém. Hors. Sér. No. 2, 323 (1964).Google Scholar
  49. Burges, H. D.: Risk analysis in the registration of pesticidal bacteria: Pathogenicity and toxicological aspects. In B. Lundholm and M. Stackerud (eds.): Environmental protection and biological forms of control of pest organisms. Ecol. Bull. 31, 81 (1980).Google Scholar
  50. Burges, H. D., and J. A. Hurst: Ecology of Bacillus thuringiensis in storage moths. J. Invertbr. Pathol. 30, 131 (1977).Google Scholar
  51. Burges, H. D., and N. W. Hussey: Introduction. In H. D. Burges and N. W. Hussey (eds.): Microbial control of insects and mites. New York: Academic Press (1971).Google Scholar
  52. Burges, H. D., and P. Thomson: Standardization and assay of microbial insecticides. In H. D. Burges and N. W. Hussey (eds.): Microbial control of insects and mites. New York: Academic Press (1971).Google Scholar
  53. Burkholder, W. E., and T. J. Shapas: Use of entomopathogens with pheromones and attractants in pest management systems for stored-product insects. In G. E. Allen, C. M. Ignoffo, and R. P. Jaques (eds.): Microbial control of insect pests: Future strategies in pest management systems (1978).Google Scholar
  54. Burkholder, W. E.: Biomonitoring for stored-product insects. In E. R. Mitchell (ed.): Management of insect pests with semiochemicals: Concepts and practice. New York: Plenum Press (1981).Google Scholar
  55. Busvine, J. R.: Insects and Hygiene. 3 ed. New York: Chapman and Hall (1980).Google Scholar
  56. Cerf, D. C., and G. P. Georghiou: Cross resistance to juvenile hormone analogues in insecticide-resistant strains of Musca domestica L. Pest. Sci. 5, 759 (1974).Google Scholar
  57. Champ, B. R., and C. E. Dyte: FAO global survey of pesticide susceptibility of stored grain pests. FAO Plant Protection Bull. 25, 49 (1977).Google Scholar
  58. Conway, J.: The control of Anagasta kuehniella (Zeller) (Lepidoptera: Phycitidae) in bulk meal bins using dichlorvos slow release PVC strips. J. Stored Prod. Res. 2, 381 (1966).Google Scholar
  59. Cooksey, K. E.: The protein crystal toxin of Bacillus thuringiensis: Biochemistry and mode of action. In H. D. Burges and N. W. Hussey (eds.): Microbial control of insects and mites. New York: Academic Press (1971).Google Scholar
  60. Corbet, A. S., and W. H. T. Tams: Keys for the identification of the Lepidoptera infesting stored food products. Proc. Zool. Soc., London (B) 113, 55 (1943).Google Scholar
  61. Cotton, R. T., and D. A. Wilbur: In C. M. Christensen (ed.): Storage of cereal grains and their products. 2 ed. Minnesota: Amer. Assoc. Cereal Chemists (1974).Google Scholar
  62. Cox, P. D.: The influence of temperature and humidity on the life cycles of Ephestia figulilella Gregson and Ephestia calidella (Guenee) (Lepidoptera: Phycitidae). J. stored Prod. Res. 10, 43 (1974).Google Scholar
  63. Crow, J. F.: Genetics of insect resistance to chemicals. Annu. Rev. Entomol. 2, 227 (1957).Google Scholar
  64. de Barjac, H., and A. Bonnefoi: Mise au point sur la classification des Bacillus thuringiensis. Entomophaga 18, 5 (1973).Google Scholar
  65. Delaney, N. E.: Sunflower growing—a changing industry. Queensland Agr. J. 104, 269 (1978).Google Scholar
  66. Demianyk, C. J., and R. N. Sinha: Effect of Pyralid moth infestation on fat acidity, seed germination, and microflora of stored wheat. J. Econ. Entomol. 74, 526 (1981).Google Scholar
  67. Dhaliwal, G. S.: On the degree of susceptibility of two species of storage insects to different fumigants. Bull. Grain Technol. 12, 64 (1974).Google Scholar
  68. Doharey, R. B., and M. S. Khalsa: Susceptibility of certain stages of Cadra cautella (Wlk.), Trogoderma granarium Everts, and Sitophilus oryzae Linn, to some fumigants. Indian J. Entomol. 38, 384 (1976).Google Scholar
  69. Dougherty, E. M., C. F. Reichelderfer, and R. M. Faust: Sensitivity of Bacillus thuringiensis var. thuringiensis to various insecticides and herbicides. J. Invertbr. Pathol. 17, 292 (1971).Google Scholar
  70. Dow Chemical Company: Use of methyl bromide for fumigation of grain by forced recirculation. Midland, Michigan: Dow Chem. Co. (1957).Google Scholar
  71. Dulmage, H. T., and K. Aizawa: Distribution of Bacillus thuringiensis in nature. In E. Kurstak (ed.): Microbial and viral pesticides. New York: Marcel Dekker (1982).Google Scholar
  72. Dulmage, H. T., and R. A. Rhodes: Production of pathogens in artificial media. In H. D. Burges and N. W. Hussey (eds.): Microbial control of insects and mites. New York: Academic Press (1971).Google Scholar
  73. Dyte, C. E.: Resistance to synthetic juvenile hormone in a strain of the flour beetle, Tribolium confusum. Nature 238, 48 (1972).PubMedGoogle Scholar
  74. El-Nahal, A. K., I.I. Ismail, A. H. Kamel, and T. S. Moustafa: Effect of temperature and relative humidity on the development of Sitotroga cerealella (Olivier) (Lepidoptera: Gelechiidae). Proc. IV Conf. Pest Control. Part I. p. 148. Cairo, Egypt: Acad. Sci. Res. Technol. and Nat. Res. Center (1978).Google Scholar
  75. Endo, Y., and J. Nishiitsutsuji-Uwo: Mode of action of Bacillus thuringiensis δ-endotoxin: Histopathological changes in the silkworm midgut. J. Inver. Pathol. 36, 90 (1980).Google Scholar
  76. Endo, Y., and J. Nishiitsutsuji-Uwo: Mode of action of Bacillus thuringiensis delta-endotoxin: Ultrastructural changes of midgut epithelium of Pieris, Lymantria, and Ephestia larvae. Appl. Entomol. Zool. 16, 231 (1981).Google Scholar
  77. Erakay, S., and A. H. Ozar: Preliminary investigations on infestation rates and control measures concerning insects injurious to dried figs in the Aegean region. Bitki Koruma Bulteni 19, 159 (1979).Google Scholar
  78. Falcon, L. A.: Use of bacteria for microbial control of insects. In H. D. Burges and N. W. Hussey (eds.): Microbial control of insects and mites. New York: Academic Press (1971).Google Scholar
  79. Fast, P. G.: Bacillus thuringiensis: Its history and mode of action. Dev. Ind. Microbiol. 15, 195 (1974).Google Scholar
  80. Faust, R. M.: Bacterial diseases. In G. E. Cantwell (ed.): Insect diseases. Vol. 1, New York: Marcel Dekker (1974).Google Scholar
  81. Faust, R. M., and L. A. Bulla, Jr.: Bacteria and their toxins as insecticides. In E. Kurstak (ed.): Microbial and viral pesticides. New York: Marcel Dekker (1982).Google Scholar
  82. Fletcher, W. R.: Growing macadamia nuts. New Zealand J. Agr. 133, 25 (1976).Google Scholar
  83. Franz, J. M.: Influence of environment and modern trends in crop management on microbial control. In H. D. Bulges and N. W. Hussey (eds.): Microbial control of insects and mites. New York: Academic Press (1971).Google Scholar
  84. Godavaribai, S., K. Krishnamurthy, and S. K. Majumder: Bacterial spores with malathion for controlling Ephestia cautella. Pest Technol. 4, 155 (1962).Google Scholar
  85. Graham, W. M.: Warehouse ecology studies of bagged maize in Kenya. II. Ecological observations of an infestation by Ephestia (Cadra) cautella (Walker) (Lepidoptera: Phycitidae). J. Stored Prod. Res. 6, 157 (1970).Google Scholar
  86. Green, A. A., K. Joyce, and J. M. G. Grodridge: Experiments on the control of Ephestia elutella (Hb.) (Lepidoptera: Phycitidae) using dichlorvos vapor. J. Stored Prod. Res. 2, 147 (1966).Google Scholar
  87. Griego, V. M., D. Moffett, and K. D. Spence: Inhibition of active K+ transport in the tobacco hornworm (Manduca sexta) midgut after ingestion of Bacillus thuringiensis endotoxin. J. Insect Physiol. 25, 283 (1979).Google Scholar
  88. Hagstrum, D. W., and J. E. Sharp: Population studies on Cadra cautella in a citrus pulp warehouse with special reference to diapause. J. Econ. Entomol. 68, 11 (1975).Google Scholar
  89. Hall, D. W.: Handling and storage of food grains in tropical and subtropical areas. FAO agricultural development paper no. 90. Rome: Food and Agriculture Organization of the United Nations (1970).Google Scholar
  90. Hannay, C. L., and P. C. Fitz-James: The protein crystals of Bacillus thuringiensis Berliner. Can. J. Microbiol. 1, 694 (1955).PubMedGoogle Scholar
  91. Harein, P. K., and E. de las Casas: Chemical control of stored-grain insects and associated micro- and macro-oiganisms. In C. M. Christensen (ed.): Storage of cereal grains and their products. 2 ed. Minnesota: Amer. Assoc. Cereal Chemists (1974).Google Scholar
  92. Heape, R. J.: Some aspects of the insect infestation on stored benniseed. Rep. Nigerian Stored Prod. Res. Inst., p. 81 (1969).Google Scholar
  93. Heimpel, A. M., and T. A. Angus: The taxonomy of insect pathogens related to Bacillus cereus (Frankland and Frankland). Can. J. Microbiol. 4, 531 (1958).PubMedGoogle Scholar
  94. Heimpel, A. M., and T. A. Angus: The site of action of crystalliferous bacteria in Lepidoptera larvae. J. Insect Pathol. 1, 152 (1959).Google Scholar
  95. Heimpel, A. M., and T. A. Angus: Bacterial insecticides. Bacteriol. Rev. 24, 266 (1960).PubMedGoogle Scholar
  96. Heimpel, A. M., and T. A. Angus: Diseases caused by certain spore forming bacteria. In E. A. Steinhaus (ed.): Insect Pathology: An advanced treatise. Vol. 2. New York: Academic Press (1963).Google Scholar
  97. Heimpel, A. M.: A critical review of Bacillus thuringiensis var. thuringiensis Berliner and other crystalliferous bacteria. Ann. Rev. Entomol. 12, 287 (1967).Google Scholar
  98. Heuser, S. G. B.: Factors influencing dosage and choice of toxicant in stored-product fumigation, p. 246. Savannah, Georgia: First Working Conf. Stored Product Entomology (1974).Google Scholar
  99. Heykal, A., M. A. El-Halfawy, M. A. Wahab, and A. M. Asran: Biological studies on Plodia interpunctella Hbn. on certain medicinal and aromatical dried plants (Lepidoptera: Phycitidae). Agr. Res. Rev. 56, 147 (1978).Google Scholar
  100. Hoopingarner, R., and M. E. A. Materu: The toxicity and histopathology of Bacillus thuringiensis Berliner in Galleria mellonella (Linneaus). J. Insect Pathol. 6, 26 (1964).Google Scholar
  101. Howe, R. W.: A summary of estimates of optimal and minimal conditions for population increase of some stored product insects. J. Stored Prod. Res. 1, 177 (1965).Google Scholar
  102. Hüber, H. E., and P. Lüthy: Bacillus thuringiensis delta-endotoxin: Composition and activation. In E. W. Davidson (ed.): Pathogenesis of invertebrate microbial diseases. New Jersey: Allanheld, Osmun & Co. (1981).Google Scholar
  103. Ignoffo, C. M., T. L. Couch, C. Garcia, and M. J. Kroha: Relative activity of Bacillus thuringiensis var. kurstaki and Bacillus thuringiensis var. israelensis against larvae of Aedes aegypti, Culex quinquefasciatus, Trichoplusia ni, Heliothis zea, and Heliothis virescens. J. Econ. Entomol. 74, 218 (1981).PubMedGoogle Scholar
  104. Jagielski, J., K. A. Scudamore, and S. G. Heuser: Residues of carbon tetrachloride and 1,2-dibromomethane in cereals and processed foods after liquid fiimigant grain treatment for pest control. Pest. Sci. 9, 117 (1978).Google Scholar
  105. Johnson, D. E., and W. H. McGaughey: Insecticidal activity of spore-free mutants of Bacillus thuringiensis against the Indian meal moth and almond moth. J. Invertbr. Pathol. 43, 156 (1984).Google Scholar
  106. Kadoum, A. M., and D. W. LaHue: Effect of hybrid, moisture content, foreign material and storage temperature on degradation of malathion residues in grain sorghum. J. Econ. Entomol. 62, 1161 (1969).Google Scholar
  107. Kadoum, A. M., and D. W. LaHue: Degradation of malathion in wheat and milling fractions. J. Econ. Entomol. 70, 109 (1977).Google Scholar
  108. Kadoum, A. M., and D. W. LaHue, and L. Alnaji: Efficacy and fate of pirimiphos-methyl residues applied at two dosage rates to wheat for milling. J. Econ. Entomol. 71, 50 (1978).Google Scholar
  109. Kamel, A. H., E. Z. Fam, M. T. Mahdy, A. Lotfy, andE. M. Sheltawy: Thephytotoxicity of methyl bromide fumigation on the germination of some seeds of certain crops. Bull. Ent. Soc. Egypt, Econ. Series 4, 1 (1970).Google Scholar
  110. Kantak, B. H.: Laboratory studies with Bacillus thuringiensis Berliner and its possible use for control of Plodia interpunctella (Hbn.). J. Econ. Entomol. 52, 1226 (1959).Google Scholar
  111. Kapoor, K. N., R. R. Rawat, W. H. Luckman, and M. L. Purohit: Damage to soybean grain by the almond moth in Madhya Pradesh, India. J. Econ. Entomol. 65, 902 (1972).Google Scholar
  112. Kinsinger, R. A., and W. H. McGaughey: Stability of Bacillus thuringiensis and a granulosis virus of Plodia interpunctella on stored wheat. J. Econ. Entomol. 69, 149 (1976).Google Scholar
  113. Kinsinger, R. A., and W. H. McGaughey: Histopathological effects of Bacillus thuringiensis on larvae of the Indian-meal moth and the almond moth. Ann. Ent. Soc. Amer. 72, 787 (1979 a).Google Scholar
  114. Kinsinger, R. A., and W. H. McGaughey: Susceptibility of populations of Indianmeal moth and almond moth to Bacillus thuringiensis. J. Econ. Entomol. 72, 346 (1979 b).Google Scholar
  115. Kinsinger, R. A., and W. H. McGaughey, and E. B. Dicke: Susceptibilities of Indianmeal moth and almond moth to eight Bacillus thuringiensis isolates. J. Kansas Entomol. Soc. 53, 495 (1980).Google Scholar
  116. Kishore, P., and M. G. Jotwani: Estimation of avoidable losses caused by the earhead caterpillars on sorghum and their control. Entomon 7, 65 (1982).Google Scholar
  117. Kramer, K. J., and H. E. McGregor: Activity of TH-6041 and TH-6042 against stored- product insects. J. Econ. Entomol. 71, 825 (1978).Google Scholar
  118. Kramer, K. J., and H. E. McGregor: Activity of seven chitin synthesis inhibitors against development of stored-product insects. Environ. Entomol. 8, 274 (1979).Google Scholar
  119. Kramer, K. J., and H. E. McGregor: Susceptibility of stored-product insects to chitin synthesis inhibitors LY-131215 and LY-127063. J. Kansas Entomol. Soc. 53, 627 (1980).Google Scholar
  120. Kurstak, E. S.: The role of Devorgilla canescens in infection by Bacillus thuringiensis Berliner in Anagasta kuehniella. Annls. Epiphyt. 17, 335 (1966).Google Scholar
  121. Kurstak, E., and P. Tijssen: Microbial and viral pesticides: Modes of action, safety, and future prospects. In E. Kurstak (ed.): Microbial and viral pesticides. New York: Marcel Dekker (1982).Google Scholar
  122. LaHue, D. W.: Evaluation of malathion, synergized pyrethrum, and diatomaceous earth on shelled corn as protectants against insects in small bins. Washington, D.C.: USDA Marketing Res. Rep. 768 (1966).Google Scholar
  123. LaHue, D. W.: Control of malathion-resistant Indianmeal moths, Plodia interpunctella (Hübner) with dichlorvos resin strips. Proc. N. C. Br. Entomol. Soc. Amer. 24, 117 (1969).Google Scholar
  124. LaHue, D. W.: Angoumois grain moth: Chemical control of infestation in shelled corn. J. Econ. Entomol. 68, 769 (1975).Google Scholar
  125. Leesch, J. G., H. B. Gillenwater, and J. O. Woodward: Methyl bromide fumigation of shelled peanuts in bulk containers. J. Econ. Entomol. 67, 769 (1974).Google Scholar
  126. Loschiavo, S. R.: Effects of synthetic growth regulators, methoprene and hydroprene on survival and development or reproduction of six species of stored products insects. J. Econ. Entomol. 69, 395 (1976).Google Scholar
  127. Lüthy, P., J-L. Cordier, and H-M. Fischer: Bacillus thuringiensis as a bacterial insecticide: Basic considerations and application. In E. Kurstak (ed.): Microbial and viral pesticides. New York: Marcel Dekker (1982).Google Scholar
  128. Lysenko, O., and M. Kŭcera: Microorganisms as sources of new insecticidal chemicals: Toxins. In H. D. Burges and N. W. Hussey (eds.): Microbial control of insects and mites, p. 205. New York: Academic Press (1971).Google Scholar
  129. Madrid, F. J., and R. N. Sinha: Feeding damage of three stored-product moths (Lepidoptera: Pyralidae) on wheat. J. Econ. Entomol. 75, 1017 (1982).Google Scholar
  130. Mahdi, M. T., E. M. Sheltawy, A. H. Kamel, and E. Z. Fam: The effect of alternating fumigation with carbon bisulphide and hydrogen phosphide on the viability of seed of certain crops. Bull. Entomol. Soc. Egypt, Econ. Series 8, 81 (1974).Google Scholar
  131. Mallamaire, A.: Les insectes ruisibles aux produits végétaux et denrees alimentaires entreposés à Dakar. Bull. Prot. Vég. A.O.F. 1, 48 (1954).Google Scholar
  132. Mardan, A. H., and P. K. Harein: The adverse response of sheep fed corn treated with Bacillus thuringiensis Berliner applied as Dipel and Thuricide. Bull. Environ. Contam. Toxicol. Submitted (1985).Google Scholar
  133. McDonald, L. L., and J. W. Press: Toxicity of eight insecticides to Indianmeal moth adults (Lepidoptera: Phycitidae). J. Georgia Entomol. Soc. 8, 200 (1973).Google Scholar
  134. McGaughey, W. H.: Compatibility of Bacillus thuringiensis and granulosis virus treatments of stored grain with four grain fumigants. J. Invertbr. Pathol. 26, 247 (1975).Google Scholar
  135. McGaughey, W. H., R. A. Kinsinger, and E. B. Dicke: Dispersal of Bacillus thuringiensis spores by non-susceptible species of stored-grain beetles. Environ. Entomol. 4, 1007 (1975).Google Scholar
  136. McGaughey, W. H.: Bacillus thuringiensis for controlling three species of moths in stored grain. Can. Entomol. 108, 105 (1976).Google Scholar
  137. McGaughey, W. H.: Response of Plodia interpunctella and Ephestia cautella larvae to spores and parasporal crystals of Bacillus thuringiensis. J. Econ. Entomol. 71, 687 (1978 a).Google Scholar
  138. McGaughey, W. H.: Effects of larval age on the susceptibility of almond moths and Indianmeal moths to Bacillus thuringiensis. J. Econ. Entomol. 71, 923 (1978 b).Google Scholar
  139. McGaughey, W. H., and R. A. Kinsinger: Susceptibility of Angoumois grain moths to Bacillus thuringiensis. J. Econ. Entomol. 71, 435 (1978).Google Scholar
  140. McGaughey, W. H.: Moth control in stored grain: Efficacy of Bacillus thuringiensis on corn and method of evaluation using small bins. J. Econ. Entomol. 71, 835 (1978).Google Scholar
  141. McGaughey, W. H.:Bacillus thuringiensis for moth control in stored wheat. Can. Entomol. 112, 327 (1980).Google Scholar
  142. McGaughey, W. H., and E. B. Dicke: Methods of applying Bacillus thuringiensis to stored corn for moth control. J. Econ. Entomol. 73, 228 (1980).Google Scholar
  143. McGaughey, W. H., K. F. Finney, L. C. Bolte, and M. D. Shogren: Spores in dockage and mill fractions of wheat treated with Bacillus thuringiensis. J. Econ. Entomol. 73, 775 (1980).Google Scholar
  144. McGaughey, W. H.: Evaluation of commercial formulations of Bacillus thuringiensis for control of the Indianmeal moth and almond moth (Lepidoptera: Pyralidae) in stored inshell peanuts. J. Econ. Entomol. 75, 754 (1982).Google Scholar
  145. McGaughey, W. H.: Compatibility of Bacillus thuringiensis and captan when used in a mixture for treating seed corn for moth control. J. Econ. Entomol. 76, 897 (1983).Google Scholar
  146. McMillian, W. W., N. W. Widstrom, and B. R. Wiseman: Yield losses in South Georgia field corn resulting from damage by several insects. J. Georgia Entomol. Soc. 11, 208 (1976).Google Scholar
  147. Mensah, G. W. K., F. L. Watters, and G. R. B. Webster: Insecticide residues in milled fractions of dry or tough wheat treated with malathion, bromophos, iodofenphos, and pirimiphos-methyl. J. Econ. Entomol. 72, 728 (1979).PubMedGoogle Scholar
  148. Meyer, A.: Pest control in stored tobacco. Zimbabwe Science News 14, 101 (1980).Google Scholar
  149. Mills, R. B., and D. A. Wilbur: Radiographic studies of Angoumois grain moth development in wheat, corn, and soighum kernels. J. Econ. Entomol. 60, 671 (1967).Google Scholar
  150. Monro, H. A. U., E. Upitis, and E. J. Bond: Resistance of a laboratory strain of Sitophilus granarius (Coleoptera: Curculionidae) to phosphine. J. Stored Prod. Res. 8, 199 (1972).Google Scholar
  151. Mookherjee, P. B., B. N. Bose, and S. Singh: Some observations on the damage potential of the almond moth, Cadra cautella (Walker) in eight different stored grains. Indian J. Entomol. 31, 1 (1969).Google Scholar
  152. Morris, O. N.: Effect of some chemical insecticides on the germination and replication of commercial Bacillus thuringiensis. J. Invertbr. Pathol. 26, 199 (1975).Google Scholar
  153. Narayanan, K., and S. Jayaraj: Mode of action of Bacillus thuringiensis Berliner in citrus leaf caterpillar, Papilo demoleus L. (Papilionidae: Lepidoptera). Indian J. Expt. Biol. 12, 89 (1974).Google Scholar
  154. Nawrot, J.: Population parameters for almond moth (Cadra cautella Wlk.) (Lepidoptera: Phycitidae) reared on natural products. Prace Naukowe Instytutu Ochrony Roslin 21, 53 (1979 a).Google Scholar
  155. Nawrot, J.: Effect of temperature and relative humidity on population parameters for almond moth (Cadra cautella Wlk.) (Lepidoptera: Phycitidae). Prace Naukowe Instytutu Ochrony Roslin 21, 41 (1979 b).Google Scholar
  156. Nelson, H. D., G. H. Spitler, and A. P. Yerington: Protecting raisins against insects during drying and storage with malathion-treated trays. Washington, D.C.: USDA Marketing Res. Rept. 594 (1963).Google Scholar
  157. Nishiitsutsuji-Uwo, J., and Y. Endo: Mode of action of Bacillus thuringiensis δ-endotoxin: Relative role of spores and crystals in toxicity to Pieris, Lymantria, and Ephestia larvae. Appi. Entomol. Zool. 15, 416 (1980).Google Scholar
  158. Nishiitsutsuji-Uwo, J., and Y. Endo: Mode of action of Bacillus thuringiensisdelta-endotoxin: Effect on Galleria mellonella (Lepidoptera: Pyralidae). Applied Entomol. Zool. 16, 79 (1981 a).Google Scholar
  159. Nishiitsutsuji-Uwo, J., and Y. Endo: Mode of action of Bacillus thuringiensis delta-endotoxin: Changes in hemolymph pH and ions of Pieris, Lymantria, and Ephestia larvae. Applied Entomol. Zool. 16, 225 (1981 b).Google Scholar
  160. Norris, J. R., and H. D. Burges: Esterases of crystalliferous bacteria pathogenic for insects: Epizootiological applications. J. Insect Pathol. 5, 460 (1963).Google Scholar
  161. Norris, J. R.: The classification of Bacillus thuringiensis. J. Applied Bacteriol. 27, 439 (1964).Google Scholar
  162. Norris, J. R.: The ecology of serotype 4b of Bacillus thuringiensis. J. Applied Bacteriol. 32, 261 (1969).Google Scholar
  163. Norris, J. R.: The protein crystal toxin of Bacillus thuringiensis: Biosynthesis and physical structure. In H. D. Burges and N. W. Hussey (eds.): Microbial control of insects and mites. New York: Academic Press (1971).Google Scholar
  164. Nwanze, K. F., G. J. Partida, and W. H. McGaughey: Susceptibility of Cadra cautella and Plodia interpunctella to Bacillus thuringiensis on wheat. J. Econ. Entomol. 68, 751 (1975).Google Scholar
  165. Okobi, A. O.: A study on the effect of five months of storage on bagged cocoa in a 1,250 ton stack. Nigerian Stored Prod. Res. Rept. 13 (1978).Google Scholar
  166. Omar, M. T. A., A. H. Kamel, A. H. El-Kifl, and A. E. A. Wahab: Ecological and bioogical studies on Cadra calidella (Guen.), a pest attacking dry dates in Egypt (Lepidoptera: Phycitidae). Bull. Soc. Entomol. Egypté 57, 361 (1974).Google Scholar
  167. Oppenoorth, F. J., and K. van Asperen: Allelic genes in the housefly producing modified enzymes that cause organophosphate resistance. Science 132, 298 (1960).PubMedGoogle Scholar
  168. Pandey, V., and N. D. Pandey: Changes in chemical constituents of various maize varieties due to infestation caused by Sitotroga cereallla Olivier. Bull. Grain Technol. 15, 27 (1977).Google Scholar
  169. Pandey, N. D., R. L. Misra, and R. A. Tripathi: Relative susceptibility of some groundnut varieties to the almond moth, Cadra cautella Walker (Phycitidae: Lepidoptera). Bull. Grain Technol. 15, 105 (1977).Google Scholar
  170. Parkin, E. A.: The onset of insecticide resistance among field populations of stored- product insects. J. Stored Prod. Res. 1, 3 (1965).Google Scholar
  171. Pasalu, I. C., G. K. Girish, and K. Krishnamurthy: Part I. Status of insecticide resistance in insect pests of stored products. Bull. Grain Technol. 12, 50 (1974).Google Scholar
  172. Plimmer, J. R.: Pesticides for stored products. In F. Matsumura and C. R. Krishna Murti (eds.): Biodegradation of pesticides. New York: Plenum Press (1982).Google Scholar
  173. Prakash, A., and L. P. Kaurawl: Development of Sitotroga cerealella with grain fungi in stored paddy at various levels of temperature and humidity. Oryza 19, 119 (1982).Google Scholar
  174. Purrini, K.: On the distribution of Bacillus thuringiensis Berliner and some Sporozoan diseases in Lepidopterous pests of stored products in the Kosova region, Yugoslavia. Anzeiger für Schädlingskunde Pflanzen. 50, 169 (1977).Google Scholar
  175. Rahman, M., and M. S. Jahan: Effect of temperature on the development of Corcyra cephalonica Stainton (Lepidoptera: Pyralidae). Bangladesh J. Zool. 7, 95 (1979).Google Scholar
  176. Ramakrishnan, N., and N. C. Pant: Some aspects of the mode of action of Bacillus thuringiensis Berliner in Earias fabia (Stoll.) (Lepidoptera: Arctiidae). Indian J. Entomol. 29, 149 (1967).Google Scholar
  177. Richards, O. W., and N. Waloff: Seasonal variations in the numbers of some warehouse insects. Proc. R. Entomol. Soc., London (A) 22, 30 (1947).Google Scholar
  178. Russel, V. M., G. G. M. Schulten, and F. A. Roorda: Laboratory observations on the development of the rice moth, Corcyra cephalonica (Stainton) (Lepidoptera: Galleriidae) on millets and sorghum at 28° C and different relative humidities. Z. ang. Entomol. 89, 488 (1980).Google Scholar
  179. Sachan, G. C., and S. K. Verma: Relative susceptibility of various sorghum lines to attack of almond moth, Ephestia cautella (Walker). Pestology 5, 18 (1981).Google Scholar
  180. Schesser, J. H.: Commercial formulations of Bacillus thuringiensis for control of Indian meal moth. Applied Environ. Microbiol. 32, 508 (1976).Google Scholar
  181. Schesser, J. H., and L. A. Bulla, Jr.: Toxicity of parasporal crystals of Bacillus thuringiensis to the Indian meal moth, Plodia interpunctella. Applied Environ. Microbiol. 37, 1012 (1979).Google Scholar
  182. Schmidt, H. U.: The efficiency of Bacillus thuringiensis Berliner in controlling the Indian meal moth (Plodia interpunctella Hbn.). Anzeiger für Schädlingskunde Pflanzen 52, 36 (1979).Google Scholar
  183. Schmidt, H. U., and R. Wohlgemuth: A “semi-field” test for the determination of the residual effect of Bacillus thuringiensis Berliner against the Indian meal moth, Plodia interpunctella Hbn. in a granary. Anzeiger für Schädlingskunde Pflanzen 52, 52 (1979).Google Scholar
  184. Scudamore, K. A., and S. G. Heuser: Determination of carbon tetrachloride in fumigated cereal grains during storage. Pest. Sci. 4, 1 (1973).Google Scholar
  185. Segault, M. D.: Role of entomophagous larvae in the infection of the caterpillars of Pieris brassicae L. and Anagasta kuehniella Zell. by Bacillus thuringiensis Berliner. Revue de Zoologie Agricole et de Pathologie Végétale 74, 68 (1975).Google Scholar
  186. Shaik, M. U., and F. O. Morrison: Susceptibility of nine insect species to infection by Bacillus thuringiensis var. thuringiensis. J. Invertbr. Pathol. 8, 347 (1966).Google Scholar
  187. Shoukry, A., N. Z. Dimetry, and A. Aboul-Zahab: Biology of the almond moth, Cadra cautella (Wlk.) on dehydrated onion in Egypt. Proc. IV Conf. Pest. Control, p. 141. Cairo, Egypt: Acad. Sci. Res. Technol. Nat. Res. Center (1978).Google Scholar
  188. Silhacek, D. L., H. Oberlander, and J. L. Zettler: Susceptibility of malathion-resistant strains of Plodia interpunctella to juvenile hormone treatments. J. Stored Prod. Res. 12, 201 (1976).Google Scholar
  189. Smith, K. G.: Insect infestation associated with French shelled walnuts with particular reference to the occurrence of Aphomia gularis (Zell.) (Lepidoptera: Galleriidae). Bull. Entomol. Res. 50, 711 (1960).Google Scholar
  190. Soderstrom, E. L., and A. E. Lovitt: Interspecific competition of almond moth, Indianmeal moth, and raisin moth in malathion-treated and untreated almonds. J. Econ. Entomol. 66, 741 (1973).Google Scholar
  191. Spitler, G. H., and P. L. Hartsell: Laboratory evaluation of malathion as a protectant for almonds during storage. J. Econ. Entomol. 60, 1456 (1967).Google Scholar
  192. Spitler, G. H., and P. L. Hartsell: Laboratory evaluation of malathion as a protectant for stored walnuts. J. Econ. Entomol. 62, 305 (1969).Google Scholar
  193. Spitler, G. H., and J. D. Clark: Laboratory evaluation of malathion as a protectant for prunes during storage. J. Econ. Entomol. 63, 1668 (1970).Google Scholar
  194. Spitler, G. H., and J. D. Clark, J. A. Coffelt, and P. L. Hartsell: Malathion as a protectant for inshell almonds during storage. J. Econ. Entomol. 67, 535 (1974).Google Scholar
  195. Steinhaus, E. A., and C. R. Bell: The effect of certain microorganisms and antibiotics on stored-grain insects. J. Econ. Entomol. 46, 582 (1953).Google Scholar
  196. Strong, R. G., and G. T. Okumura: Insects and mites associated with stored foods and seeds in California. Calif. Bull. Dept. Agr. 47, 233 (1958).Google Scholar
  197. Strong, R. G.,, and D. E. Sbur: Influence of grain moisture and storage temperatures on the effectiveness of malathion as a grain protectant. J. Econ. Entomol. 53, 341 (1960).Google Scholar
  198. Strong, R. G.: Relative susceptibility of five stored-product moths to some organophosphorous insecticides. J. Econ. Entomol. 62, 1036 (1969).Google Scholar
  199. Subramanyam, Bh., and L. K. Cutkomp: Susceptibility of larval instars of Indianmeal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) to Bacillus thuringiensis-insecticidz combinations. N. C. Br., Entomol. Soc. Amer., 39th ann. meeting, Wichita, Kansas. Abstr. (1984).Google Scholar
  200. Sutter, G. R., and E. S. Raun: Histopathology of European corn borer larvae treated with Bacillus thuringiensis. J. Invertbr. Pathol. 9, 90 (1967).Google Scholar
  201. Sutter, G. R., M. D. Abrahamson, E. W. Hamilton, and I. D. Vick: Compatibility of Bacillus thuringiensis var. thuringiensis and chemical insecticides. I. Effect of insecticide doses on bacterial replication rate. J. Econ. Entomol. 64, 1348 (1971).PubMedGoogle Scholar
  202. Swenk, M. H.: Insect pests of stored grains and their control. Nebraska Agr. Expt. Station, Lincoln. Circ. 15 (1922).Google Scholar
  203. Teotia, T. P. S., and N. Prasad: Effect of food on the susceptibility of larvae of Cadra cautella (Walker) to some insecticides. Indian J. Entomol. 36, 179 (1974).Google Scholar
  204. Torch, J. M. Le: Cold: A means of protection against stored-products pests. Laboratory tests on prune insects. Reveue de Zoologie Agricole et de Pathologie Végétale 76, 109 (1977).Google Scholar
  205. Travers, R. S., R. M. Faust, and C. F. Reichelderfer: Effects of Bacillus thuringiensis var. thuringiensis δ-endotoxin on isolated lepidopteran mitochondria. J. Invertbr. Pathol. 28, 351 (1976).Google Scholar
  206. Vaňková, J., and K. Purrini: Natural epizootics caused by bacilli of the species Bacillus thuringiensis and Bacillus cereus. Z. ang. Entomol. 88, 216 (1979).Google Scholar
  207. Vincent, L. E., M. K. Rust, and D. L. Lindgren: Methyl bromide toxicity at various low temperatures and exposure periods to Angoumois grain moth and Indianmeal moth in popcorn. J. Econ. Entomol. 73, 313 (1980).Google Scholar
  208. Walchli, O.: Moth larvae as wood pests. Z. ang. Entomol. 72, 169 (1972).Google Scholar
  209. Webley, D. J., and A. H. Harris: A comparison of fumigants for in-bag fumigation. Trop. Stored Prod. Inf. 33, 9 (1977).Google Scholar
  210. Wilbur, D. A., and R. B. Mills: Stored-grain insects. In R. E. Pfadt (ed.): Fundamentals of applied entomology. 3 ed. New York: Academic Press (1978).Google Scholar
  211. Woodroffe, G. E.: A life history study of the brown house moth, Hojmannophila pseudospretella (Staint.) (Lepidoptera: Oecophoridae). Bull. Entomol. Res. 41, 529 (1951 a).Google Scholar
  212. Woodroffe, G. E.: A life history study of Endrosis lactella (Schiff.) (Lepidoptera: Oecophoridae). Bull. Entomol. Res. 41, 749 (1951 b).Google Scholar
  213. Zagulyaev, A. K.: Tineids and Pyralids-pests of stored products. Zaschita Rasterii 12, 38 (1967).Google Scholar
  214. Zettler, J. L., L. L. McDonald, L. M. Redlinger, and R. D. Jones: Plodia interpunctella and Cadra cautella resistance in strains to malathion and synergized pyrethrins. J. Econ. Entomol. 66, 1049 (1973).Google Scholar
  215. Zettler, J. L.: Esterases in a malathion-susceptible and a malathion-resistant strain of Plodia interpunctella (Lepidoptera: Phycitidae). J. Georgia Entomol. Soc. 9, 207 (1974 a).Google Scholar
  216. Zettler, J. L., PP 511: Toxicity to malathion-resistant strains of the Indianmeal moth. J. Econ. Entomol. 67, 450 (1974 b).Google Scholar
  217. Zettler, J. L.: Insecticide resistance in selected stored-product insects infesting peanuts in the southeastern United States. J. Econ. Entomol. 75, 359 (1982).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1985

Authors and Affiliations

  • Bh. Subramanyam
    • 1
  • L. K. Cutkomp
    • 1
  1. 1.Department of EntomologyUniversity of MinnesotaSt. PaulUSA

Personalised recommendations