Skip to main content

The Distinctive Properties of Andosols

  • Conference paper
Advances in Soil Science

Part of the book series: Advances in Soil Science ((SOIL,volume 2))

Abstract

Most soils derived from volcanic ash and pumice show distinctive properties that are not found in soils derived from other parent materials under the same vegetation and climate. Thorp and Smith (1949) first recognized them as a great soil group and gave them the tentative name Ando soils; Ando means dark soils in Japanese. They noted a wide distribution of these soils in deposits of volcanic ash not only in Japan but in other parts of the world. The Ando soils consist, primarily, of dark brown to black A1 horizons, averaging about 30 cm thick, of fine crumb or granular structure with the organic content close to 8% on average and ranging up to 30% in the darkest members of the group. Some members of the group have distinct B horizons with more clay than A horizons, but the younger members are essentially AC soils. The soils have low exchangeable “bases” and occur in humid to perhumid climates with temperature efficiency ranging from cool mesothermal to tropical. Natural vegetation varies from place to place and includes broad-leaved and coniferous forest types often with an understory of bamboo. Thorp and Smith (1949) had some difficulty in deciding whether Ando soils should be placed in the zonal or intrazonal orders, because they did not know whether the dark color of the soils was caused by vegetation or by the soils’ parent material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abd-Elfattah, A., and K. Wada. 1981. Adsorption of lead, copper, zinc, cobalt, and cadmium by soils that differ in cation-exchange materials. J. Soil Sci. 32:271–283.

    Article  CAS  Google Scholar 

  • Adachi, T. 1973. Studies on the humus of volcanic ash soils cregional differences of humus composition in volcanic ash soils in Japan. Bull. Nat. Inst. Agr. Sci. Japan B24:127–264. (In Japanese)

    Google Scholar 

  • Amano, Y. 1983. Andisol proposal and Japanese volcanic ash soils criteria for chemical properties. In:N. Yoshinaga (ed.), Volcanic ash soils genesis, properties, classification. pp. 187–204. Hakuyusha,Tokyo, 204 pp. (In Japanese)

    Google Scholar 

  • Aomine, S. 1972. Nitrogen fertility and humic matter of Chilean Andosols. Soil Sci. Plant Nutr. 18:105–113.

    Google Scholar 

  • Aomine, S., and H. Otsuka. 1968. Surface of soil allophanic clays. Trans. 9th Intl. Congr. Soil Sci. 1:731–737.

    CAS  Google Scholar 

  • Arai, S. 1983. Humus in volcanic ash soil. In:N. Yoshinaga (ed.), Volcanic ash soil Genesis, Properties, Classification. pp. 73–98. Hakuyusha, Tokyo. 204 pp. (In Japanese)

    Google Scholar 

  • Araragi, M., and eS. Ishizawa. 1972. Actinomycete flora of Japanese soils. Bull. Nat. Inst. Agr. Sci. Japan B23:147–255. (In Japanese)

    Google Scholar 

  • Bascomb, C.L. 1968. Distribution of pyrophosphate-extractable iron and organic carbon in soils of various groups. J. Soil Sci. 19:251–268.

    Article  CAS  Google Scholar 

  • Birrell, K.S. 1961. The adsorption of cations from solutions by allophane in relation to their effective size. J. Soil Sci. 12:307–316.

    Article  Google Scholar 

  • Brydon, J.E., and S. Shimoda. 1972. Allophane and other amorphous constituents in a podzol from Nova Scotia. Can. J. Soil Sci. 52:465–475.

    Google Scholar 

  • Claridge, G.G.C. 1981. Mineralogy of the soils of the Kingdom of Tonga. Soils with Variable Charge, Programme and Abstracts. pp. 176–177.

    Google Scholar 

  • Colmet-Daage, F. 1969. Nature of the clay of some volcanic ash soils of the Antilles, Ecuador and Nicaragua. In:Panel on Volcanic Ash Soils in Latin America. Turrialba, Costa Rica. B.2.1–B. 2. 11.

    Google Scholar 

  • Cradwick, P.D.G., V.C. Farmer, J.D. Russell, C.R. Masson, K. Wada, and N. Yoshinaga. 1972. Imogolite, a hydrated aluminum silicate of tubular structure. Nature Phys. Sci. 240:187–189.

    Article  CAS  Google Scholar 

  • Dudas, M.J., and M.E. Harward, 1975. Inherited and detrital 2:1 type phyllosilicates in soils developed from Mazama ash. Soil Sci. Soc. Am. Proc. 39:571–577.

    Article  CAS  Google Scholar 

  • Egawa, T. 1977. Properties of soils derived from volcanic ash. In:Y. Ishizuka and C.A. Black (eds.), Soil derived from volcanic ash in Japan. pp. 10–63. International Maize and Wheat Improvement Center, Mexico. 102 pp.

    Google Scholar 

  • FAO/UNESCO. 1974. Soil map of the world. Vol. I. Legend. UNESCO, Paris. 59 pp.

    Google Scholar 

  • Farmer, V.C. 1982. Significance of the presence of allophane and imogolite in Podzol B horizons for podzolization mechanisms:a review. Soil Sci. Plant Nutr. 28:571–578.

    CAS  Google Scholar 

  • Farmer, V.C., and A.R. Fraser. 1979. Synthetic imogolite. In:M.M. Mortland and V.C. Farmer (eds.), International Clay Conference, 1978. pp. 547–553. Elsevier Scientific Publishing Co., Amsterdam. 662 pp.

    Google Scholar 

  • Farmer, V.C., A.R. Fraser, and J.M. Tait. 1977. Synthesis of imogolite:a tubular aluminum silicate polymer. J. Chem. Soc. Chem. Comm. 13:462–463.

    Article  Google Scholar 

  • Farmer, V.C., J.D. Russell, and M.L. Berrow. 1980. Imogolite and proto-imogolite allophane in Spodic horizons:evidence for a mobile aluminum silicate complex in Podzol. J. Soil. Sci. 31:673–684.

    Article  CAS  Google Scholar 

  • Flach, K.W. 1969. The use of the 7th approximation for the classification of soils from volcanic ash. In:Panel on Volcanic Ash Soils in Latin America. Turrialba, Costa Rica. A.7.1–A.7.18.

    Google Scholar 

  • Galindo, G.G., and F.T. Bingham. 1977. Homovalent and heterovalent cation exchange equilibria in soils with variable surface charge. Soil Sci. Soc. Am. J. 41:883–886

    Article  CAS  Google Scholar 

  • Gibbs, H. 1968. Volcanic-ash soils in New Zealand. New Zealand Department of Scientific and Industrial Research. Information Series No. 65. 39 pp.

    Google Scholar 

  • Gonzales-Batista, A., J.M. Hernandez-Moreno, E. Fernandez-Caldas, and A.J. Herbillon. 1982. Influence of silica content on the surface charge characteristics of allophanic clays. Clays Clay Min. 30:103–110.

    Article  CAS  Google Scholar 

  • Gradwell, M.W. 1974. The available-water capacities of some southern and central zonal soils of New Zealand. New Zealand J. Agr. Res. 17:465–478.

    Google Scholar 

  • Gradwell, M.W. 1976. Available-water capacities of some intrazonal soils of New Zealand. New Zealand J. Agr. Res. 19:69–78.

    Google Scholar 

  • Gunjigake, N., and K. Wada. 1981. Effects of phosphorus concentration and pH on phosphate retention by active aluminum and iron of Ando soils. Soil Sci. 132:347–352.

    CAS  Google Scholar 

  • Henmi, T., and K. Wada. 1976. Morphology and composition of allophane. Am. Mineral. 61:379–390.

    CAS  Google Scholar 

  • Higashi, T., and K. Wada. 1977. Size fractionation, dissolution analysis, and infrared spectroscopy of humus complexes in Ando soils. J. Soil Sci. 28:653–663.

    CAS  Google Scholar 

  • Hunsaker, V.E., and P.F. Pratt. 1971. Calcium-magnesium exchange equilibria in soils. Soil Sci. Soc. Am. Proc. 35:151–152.

    Article  CAS  Google Scholar 

  • Inoko, A., and M. Tamai. 1976. Studies on soil humus with special reference to its molecular weight systems. Bull. Nat. Inst. Agr. Sci. Japan B28:119–182. (In Japanese)

    Google Scholar 

  • Inoue, K. 1981. Implications of eolian dusts to 14-A minerals in the volcanic ash soils in Japan. Pedologist 25:97–118. (In Japanese)

    CAS  Google Scholar 

  • Inoue, M., S. Takeishi, H. Miyake, N. Watanabe, R. Morimoto, K. Yamaoka, and M. Sakai. 1980. Application of cartap granules into the soil for rice seedling box. II. J. Takeda Res. Lab. 39:21–27. (In Japanese)

    CAS  Google Scholar 

  • Ishizawa, S., and K. Toyoda. 1964. Microflora of Japanese soils. Bull. Nat. Inst. Agr. Sci. Japan B14:203–284. (In Japanese)

    Google Scholar 

  • Kato, Y. 1970. A model for amorphous matters of humic soils in Japan -a preliminary report. Pedologist 14:16–21. (In Japanese)

    Google Scholar 

  • Kirkman, J.H. 1977. Possible structure of halloysite disks and cylinders observed in some New Zealand rhyolitic tephras. Clay Min. 12:199–216.

    Article  CAS  Google Scholar 

  • Kita, D., R. Nakata, and M. Harada. 1969. Geochemical study on ashy soil in Kyushu district and its lime stabilization. J. Clay Sci. Soc. Japan 9:28–40. (In Japanese)

    CAS  Google Scholar 

  • Kitajima, S. 1983. Changes of soil loss and erosion patterns due to the grassland reclamation on slopes covered with volcanic ash soil. Bull. Kyushu Nat. Agr. Exp. Sta. 23:205–234. (In Japanese)

    Google Scholar 

  • Knight, B.A.G., and T.E. Tomlinson. 1967. The interaction of paraquat (1:1’dimethyl 4:4’ dipyridylium dichloride) with mineral soils. J. Soil Sci. 18:233–243.

    Article  CAS  Google Scholar 

  • Kobayashi, Y. 1981. Studies of cobalt deficient grasslands for ruminants in soils of volcanic ash origin. Jap. J. Soil Sci. Plant Nutr. 52:394–400. (In Japanese)

    Google Scholar 

  • Kobo, K., and Y. Oba. 1974a. Genesis and characteristics of volcanic ash soil in Japan. Pt. 7. J. Sci. Soil Man. Japan 45:227–233. (In Japanese)

    CAS  Google Scholar 

  • Kobo, K., and Y. Oba. 1974b. Genesis and characteristics of volcanic ash soil in Japan. Pt. 8. J. Sci. Soil Man. Japan 45:293–297.

    CAS  Google Scholar 

  • Kubota, T. 1976. Surface chemical properties of volcanic ash soil especially on phenomenon and mechanisms of irreversible aggregation of the soil by drying. Bull. Nat. Inst. Agr. Sci. Japan B28:1–74. (In Japanese)

    Google Scholar 

  • Kuroboku Soken. 1983. International correlation of kuroboku soils (volcanic ash soils) and related soils. Faculty of Agriculture, Kyushu University, Fukuoka. 61 pp. (In Japanese)

    Google Scholar 

  • Leamy, M.L. 1983. Proposed revision of the Andisol proposal. ICOMAND Circular Letter 5:3–29.

    Google Scholar 

  • Machida, H., and F. Arai. 1978. Akahoya ash -a Holocene wide-spread tephra erupted from the Kikai Caldera, South Kyushu, Japan. Quat. Res. 17:143–163. (In Japanese)

    Article  Google Scholar 

  • Maeda, T., and K. Soma. 1979. Soil water characteristics of organo-volcanic ash soils (Kuroboku soil). Trans. Japan Soc. Irrig. Drain. Reclam. Eng. 84:61–67. (In Japanese)

    Google Scholar 

  • Maeda, T., K. Soma, and B.P. Warkentin. 1983. Physical and engineering characteristics of volcanic ash soils in Japan compared with those in other countries. Irrig. Eng. Rur. Plan. 3:16–31.

    Google Scholar 

  • Maeda, T., H. Takenaka, and B.P. Warkentin. 1977. Physical properties of allophane soils. Adv. Agron. 29:229–264.

    Article  Google Scholar 

  • Martin, A.E., and R. Reeve. 1958. Chemical studies of Podzolic alluvial horizons. Pt. 3. J. Soil Sci. 9:89–100.

    Article  CAS  Google Scholar 

  • McKeague, J.A., and J.H. Day. 1966. Dithionite- and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Can. J. Soil Sci. 46:13–22.

    Article  CAS  Google Scholar 

  • Miki, N., Y. Kondo, and S. Tamura. 1975. Trace elements in volcanic ash soils distributed in Eastern Hokkaido. Res. Bull. Obihiro Zootech. Univ. 9:547–587. (In Japanese)

    Google Scholar 

  • Misono, S. 1964. Soil moisture. In:Volcanic ash soils in Japan. pp. 75–79. Ministry of Agriculture and Forestry Japanese Government, Tokyo. 211 pp.

    Google Scholar 

  • Mizota, C. 1981. Geomorphological relationships of copper contents of Ando soils deficient in copper, Abashiri County, Eastern Hokkaido. J. Sci. Soil Man. Japan 52:99–106. (In Japanese)

    CAS  Google Scholar 

  • Mizota, C. 1982. Tropospheric origin of quartz in Ando soils and Red-Yellow soils on basalts, Japan. Soil Sci. Plant Nutr. 28:517–522.

    CAS  Google Scholar 

  • Mizota, C. 1983. Eolian origin of the micaceous minerals in an Ando soil from Kitakami, Japan. Soil Sci. Plant Nutr. 29:379–382.

    CAS  Google Scholar 

  • Mizota, C., and K. Wada. 1980. Implications of clay mineralogy to the weathering and chemistry of Ap horizons of Ando soils. Geoderma 23:49–63.

    Article  CAS  Google Scholar 

  • Mizota, C., M.A. Carrasco, and K. Wada. 1982. Clay mineralogy and some chemical properties of Ap horizons of Ando soils used for paddy rice in Japan. Geoderma 27:225–237.

    Article  CAS  Google Scholar 

  • Nakai, M., and N. Yoshinaga. 1980. Fibrous goethite in some soils from Japan and Scotland. Geoderma 24:143–158.

    Article  CAS  Google Scholar 

  • Nomoto, K., K. Araki, M. Ishikawa, Y. Kamada, Y. Kosegawa, and S. Yoshioka. 1955. Studies on the chemical properties of upland held soil in Tohoku district. Bull. Tohoku Nat. Agr. Exp. Sta. 21:30–144. (In Japanese)

    Google Scholar 

  • Okamura, Y., and K. Wada. 1983. Electric charge characteristics of horizons of Ando (B) and Red-Yellow B soils and weathered pumices. J. Soil Sci. 34:287–295.

    Article  CAS  Google Scholar 

  • Okamura, Y. and K. Wada. 1984. Ammonium-calcium exchange equilibria in soils and weathered pumices that differ in cation-exchange materials. J. Soil Sci. 35:387–396.

    Article  CAS  Google Scholar 

  • Ono, S., and Y. Uchida. 1979. Adsorption of ammonium phosphate salt by soils. J. Sci. Soil Man. Japan 50:555–560. (In Japanese)

    Google Scholar 

  • Parfitt, R.L. 1980. Chemical properties of variable charge soils. In:B.K.G. Theng (ed.), Soils with variable charge. pp. 167–194. New Zealand Society of Soil Science, Lower Hutt. 488 pp.

    Google Scholar 

  • Parfitt, RL., and T. Henmi. 1980. Structure of some allophanes from New Zealand. Clays Clay Min. 28:285–294.

    Article  CAS  Google Scholar 

  • Rajan, S.S.S. 1975. Mechanism of phosphate adsorption by allophanic clays. New Zealand J. Sci. 18:93–101.

    CAS  Google Scholar 

  • Russell, M., R.L. Parfitt, and G.G.C. Claridge. 1981. Estimation of the amounts of allophane and other materials in the clay fraction of an Egmont loam profile and other volcanic ash soils, New Zealand. Austr. J. Soil Res. 19:185–195.

    Article  CAS  Google Scholar 

  • Saigusa, M., S. Shoji, and T. Takahashi. 1980. Plant root growth in acid Andosols from northeastern Japan. 2. Exchange acidity Y1 as a realistic measure of aluminum toxicity potential. Soil Sci. 130:242 - 250.

    Article  CAS  Google Scholar 

  • Schalscha, E.B., P.F. Pratt, and L. De Andrade. 1975. Potassium-calcium exchange equilibria in volcanic ash soils. Soil Sci. Soc. Am. Proc. 39:1069–1072.

    Article  CAS  Google Scholar 

  • Schalscha, E.B., P.F. Pratt, and D. Soto. 1974. Effect of phosphate adsorption on the cation exchange capacity of volcanic ash soils. Soil Sci. Soc. Am. Proc. 38:539–540.

    Article  CAS  Google Scholar 

  • Schalscha, E.B., P.F. Pratt, T. Kinjo, and J. Amar. 1972. Effect of phosphate salts as saturating solutions in cation exchange capacity determinations. Soil Sci. Soc. Am. Proc. 36:912–914.

    Article  CAS  Google Scholar 

  • Seino, K., K. Yamashita, T. Motomatsu, and M. Motooka. 1976. The growth pattern of rice plant in several main paddy soils in the southern district of Japan. Bull. Kyushu Agr. Exp. Sta. 18:133–156. (In Japanese)

    CAS  Google Scholar 

  • Sherman, D., and L.D. Swindale. 1964. Hawaiian soils from volcanic ash. In:World soil resources reports 14. pp. 36–49. FAO/UNESCO. 169 pp.

    Google Scholar 

  • Shoji, S. 1983. Mineralogical properties of volcanic ash soils. In:N. Yoshinaga (ed.), Volcanic ash soil Genesis, Properties, Classification. pp. 31–72. Hakuyusha, Tokyo. 204 pp. (In Japanese)

    Google Scholar 

  • Shoji, S., and J. Masui. 1971. Opaline silica of recent volcanic ash soils in Japan. J. Soil Sci. 22:101–108.

    Article  CAS  Google Scholar 

  • Shoji, S., and T. Ono. 1978. Physical and chemical properties and clay mineralogy of Andosols from Kitakami, Japan. Soil Sci. 126:297–312.

    Article  CAS  Google Scholar 

  • Shoji, S., and I. Yamada. 1977. Soil mineralogy and fertility of Ando soils in Japan. Proc. Intl. Sem. Soil. Env. Fert. Man. Int. Agr., Soc. Sci. Soil Man. Japan. pp. 96–102. Tokyo.

    Google Scholar 

  • Shoji, S., Y. Fujiwara, I. Yamada, and M. Saigusa. 1982. Chemistry and clay mineralogy of Ando soils, Brown forest soils, and Podzolic soils formed from recent Towada ashes, northeastern Japan. Soil Sci.. 133:69–86.

    Article  CAS  Google Scholar 

  • Sixth International Soil Classification workshop. 1984. Tour guide. Part 1. Chile and Part 2. Ecuador. Soil Management Support Services, Washington, DC.

    Google Scholar 

  • Smalley, I.J., C.W. Ross, and J.S. Whitton. 1980. Clays from New Zealand support the inactive particle theory of soil sensitivity. Nature 288:576–577.

    Article  Google Scholar 

  • Soil Survey Staff. 1975. Soil Taxonomy. A Basic System for Making and Interpreting Soil Surveys. Dept. Agr. Handbook No. 436. Washington, DC.

    Google Scholar 

  • Stewart, R.B., V.E. Neall, J.A. Pollok, and J.K. Syers. 1977. Parent material stratigraphy of an Egmont loam profile, Taranaki, New Zealand. Austr. J. Soil Res. 15:177–190.

    Article  Google Scholar 

  • Tait, J.M., N. Yoshinaga, and B.D. Mitchell. 1978. The occurrence of imogolite in some Scottish soils. Soil Sci. Plant Nutr. 24:145–151.

    Google Scholar 

  • Tan, K.H. 1964. The Andosols in Indonesia. In:World soil resource report 14. pp. 30–35. FAO/UNESCO. 169 p.

    Google Scholar 

  • Theng, B.K.G. 1972. Adsorption of ammonium and some primary n-alkylammonium cations by soil allophane. Nature 238:150–151.

    Article  CAS  Google Scholar 

  • Theng, B.K.G., D.J. Greenland, and J.P. Quirk. 1967. Adsorption of alkylammonium cations by montmorillonite. Clay Min. 7:1–17.

    Article  CAS  Google Scholar 

  • Theng, B.K.G., M. Russell, G.J. Churchman, and R.L. Parfitt. 1982. Surface properties of allophane, halloysite, and imogolite. Clays Clay Min. 30:143–149.

    Article  CAS  Google Scholar 

  • Thorp, J., and G.D. Smith. 1949. Higher categories of soil classification:order, suborder, and great soil groups. Soil Sci. 67:117–126.

    Article  Google Scholar 

  • Tokashiki, Y., and K. Wada. 1975. Weathering implications of the mineralogy of clay fractions of two Ando soils, Kyushu. Geoderma 14:47–62.

    Article  CAS  Google Scholar 

  • Tokudome, S., and I. Kanno. 1968. Nature of the humus of some Japanese soils. Trans. 9th Intl. Congr. Soil Sci. 3:163–173.

    CAS  Google Scholar 

  • Tsutsumi, M., K. Ohira, and A. Fujiwara. 1968. Copper deficiency in humus rich volcanic ash soil, Pt.4 J. Sci. Soil Man. Japan 39:131–136 (In Japanese).

    CAS  Google Scholar 

  • Wada, K. 1977. Allophane and imogolite. In:J.B. Dixon and S.B. Weed (eds.), Minerals in soil environments. pp. 60–638. Soil Science Society of America, Madison. 948 pp.

    Google Scholar 

  • Wada, K. 1980. Mineralogical characteristics of Andisols. In:B.K.G. Theng (ed.), Soils with variable change. pp. 87–107. New Zealand Society of Soil Science, Lower Hutt. 448 pp.

    Google Scholar 

  • Wada, K. 1981. Ion exchange and adsorption by soil clays. In:T. Fujisawa and N. Yoshinaga (eds.), Adsorption phenomena in soil—Fundamental and application. pp. 5–57. Hakuyusha, Tokyo. 160 pp. (In Japanese)

    Google Scholar 

  • Wada, K., and A. Abd-Elfattah. 1978. Characterization of zinc adsorption sites in two mineral soils. Soil Sci. Plant Nutr. 24:417–426.

    CAS  Google Scholar 

  • Wada, K., and S. Aomine. 1973. Soil development on volcanic materials during the Quaternary. Soil Sci. 116:170–177.

    Article  CAS  Google Scholar 

  • Wada, K., and T. Higashi. 1976. The categories of aluminum- and iron-humus complexes in Ando soils determined by selective dissolution. J. Soil Sci. 27:357–368.

    Article  CAS  Google Scholar 

  • Wada, K. and Y. Kakuto, 1985. Spot test with toluidine blue for allophane and imogolite. Soil Sci. Soc. Am. J in press.

    Google Scholar 

  • Wada, K., and Y. Okamura. 1980. Electric charge characteristics of Ando A1 and buried A1 horizon soils. J. Soil Sci. 31:307–314.

    Article  Google Scholar 

  • Wada, K., and Y. Tange. 1984. Interaction of methyl- and ethyl-ammonium ions and piperidinium ions with soils. Soil Sci. 137:315–323.

    Article  CAS  Google Scholar 

  • Wada, K., H. Gondo, and S. I. Wada. 1982. An incipient form of halloysite in a Kuroboku paddy soil. Abst. 1982 Mtng., Japanese Soc. Soil Plant Nutr. 28:32. (In Japanese)

    Google Scholar 

  • Wada, K., T. Henmi, N. Yoshinaga, and S.H. Patterson. 1972. Imogolite and allophane formed in saprolite of basalt on Maui, Hawaii. Clays Clay Min. 20:375–380.

    Article  CAS  Google Scholar 

  • Wada, S.I., and C. Mizota. 1982. Iron-rich halloysite (10 A) with crumpled lamellar morphology from Hokkaido, Japan. Clays Clay Min. 30:315–317.

    Article  CAS  Google Scholar 

  • Wada, S.I., and A. Nagasato. 1983. Formation of silica microplates by freezing dilute silicic acid solutions. Soil Sci. Plant Nutr. 29:93–95.

    CAS  Google Scholar 

  • Wada, S.I., and K. Wada. 1977. Density and structure of allophane. Clay Min. 12:289–298.

    Article  CAS  Google Scholar 

  • Wada, S.I., A. Eto, and K. Wada. 1979. Synthetic allophane and imogolite. J. Soil Sci. 30:347–355.

    Article  CAS  Google Scholar 

  • Wesley, L.D. 1973. Some basic engineering properties of halloysite and allophane clays in Java, Indonesia. Geotechnique 23:471–494.

    Article  Google Scholar 

  • Wielemaker, W.G., and T. Wakatsuki. 1984. Properties, weathering and classification of some soils formed in peralkaline volcanic ash in Kenya. Geoderma 32:21–44.

    Article  CAS  Google Scholar 

  • Wright, A.C.S. 1964. The “Andosols” or “Humic Allophane” soils of South America. In:World soil resources report 14. pp. 9–22. FAO/UNESCO. 169 pp.

    Google Scholar 

  • Yagi, H., M. Takami, N. Tanaka, and T. Kubo. 1983. Properties of forest soils derived from volcanic ash on Mt. Fuji and Mt. Amagi. Nippon Ringakukai Taikai Koenshu 94:729–746. (In Japanese)

    Google Scholar 

  • Yamada, I., and S. Shoji. 1982. Retention of potassium by volcanic glasses of the topsoils of Andosols in Tohoku, Japan. Soil Sci. 133:208–212.

    Article  CAS  Google Scholar 

  • Yamada, S. 1968. Soil genesis, classification, survey and their application with emphasis on volcanic ash soils. Yokendo, Tokyo. (In Japanese)

    Google Scholar 

  • Yonebayashi, K. 1976. Studies on organo-mineral complexes in soils. Sci. Rep. Kyoto Pref. Univ. Agr. 28:121–171.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Wada, K. (1985). The Distinctive Properties of Andosols. In: Stewart, B.A. (eds) Advances in Soil Science. Advances in Soil Science, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5088-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5088-3_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9558-7

  • Online ISBN: 978-1-4612-5088-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics