Advertisement

The Effect of Pedogenic Environments on Iron Oxide Minerals

  • U. Schwertmann
Part of the Advances in Soil Science book series (SOIL, volume 1)

Abstract

Soil color is and has always been of interest to soil scientists around the world. It has entered into many classification systems and even modern classifications such as the US Soil Taxonomy use soil color at various levels.

Keywords

Iron Oxide Green Rust Hydromorphic Soil Iron Oxide Mineral Aluminum Substitution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blume, H.P. 1968. Stauwasserböden.-Arb. Univ. Hohenheim (Landwirtschaft Hochschule) 42:242 S.; E. Ulmer, Stuttgart.Google Scholar
  2. Brown, G. 1953. The occurrence of lepidocrocite in British soils. J. Soil Sci. 4: 220–228.CrossRefGoogle Scholar
  3. Cailliére, S., L. Gatineau, and St. Hénin. 1960. Préparation à basse température d’hematite alumineuse. C.R. Acad. Sci. 250: 3677–3679.Google Scholar
  4. Campbell, A.S., and U. Schwertmann. 1984. Iron oxide mineralogy of placic horizons. J. Soil Sci. In press.Google Scholar
  5. Carlson, L., and U. Schwertmann. 1981. Natural ferrihydrites in surface deposits from Finland and their association with silica. Geochim. Cosmochim. Acta 45: 421–429.CrossRefGoogle Scholar
  6. Carlson, L. and U. Schwertmann. 1984. Iron and manganese oxides from ground water treatment plants in Finland. J. Amer. Water Works (submitted).Google Scholar
  7. Chen, C.C., J.B. Dixon, and F.T. Turner. 1980. Iron coating on rice roots: mineralogy and quantity influencing factors. Soil Sci. Soc. Am. J. 44: 635–639.CrossRefGoogle Scholar
  8. Childs, C.W., C.J. Downes, and N. Wells. 1982. Hydrous iron oxide minerals with short range order deposited in a spring/stream system, Tongariro National Park, New Zealand, Aust. J. Soil Res. 20: 119–129.CrossRefGoogle Scholar
  9. Chukhrov, F.V., B.B. Zvijagin, A.I. Gorshkov, L.P. Ervilova, and V.V. Balashova. 1973. Ferrihydrite. Izv. Akad. Nauk. SSSR. Ser. Geol. 4: 23–33.Google Scholar
  10. Cornell, R.M., and U. Schwertmann. 1979. Influence of organic anions on the crystallization of ferrihydrite. Clays and Clay Min. 27: 402–410.CrossRefGoogle Scholar
  11. Correns, C.W., and W. von Engelhardt. 1941. Röntgenographische Untersunchungen über den Mineralbestand sedimentärer Eisenerze. Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. 213: 131–137.Google Scholar
  12. Coventry, R.J., R.M. Taylor, and R.W. Fitzpatrick. 1983. Pedological significance of the gravels in some red and grey earth of Central North Queensland. Aust. J. Soil Res. 21: 219–240.CrossRefGoogle Scholar
  13. Curi, N. 1983. Lithosequence and toposequence of oxisols from Goias and Minas Gerais states, Brazil. Ph.D. thesis, Purdue University.Google Scholar
  14. Daniels, R.B., E.E. Gamble, S.W. Buol, and H.H. Bailey. 1975. Free iron sources in an aquult-udult sequence from North Carolina. Soil Sci. Soc. Am. Proc. 39: 335–340.CrossRefGoogle Scholar
  15. Didier, P., D. Nahon, B. Fritz and Y. Tardy. 1983. Activity of water as a geochemical controlling factor in ferricretes. A thermodynamic model in the system: kaolonite Fe-oxidydroxides Fe-Al. Petrology of Geafliening and Soils Memoire No. 71, Institut de Geologie, Universite Strasbourg, 35–44.Google Scholar
  16. Echols, R.K. 1983. Mineralogy and morphology of mottles in a Paleudult-Paleaquult toposequence. M.Sc. thesis, University of Florida.Google Scholar
  17. Evans, L.J., J.G. Roswell, and J.D. Aspinall. 1978. Massive iron formations in some gleysolic soils of southwestern Ontario. Can. J. Soil Sci 58: 391–395.CrossRefGoogle Scholar
  18. Feitknecht, W. and W. Michaelis. 1962. Über die Hydrolyse von Eisen(III) perchlorat-Lösungen. Helv. Chim. Acta 45: 212–224.CrossRefGoogle Scholar
  19. Fey, M.V. 1983. Hypothesis for the pedogenic yellowing of red soil materials. Tech. Commun. Dept. of Agr. and Fisheries, Republic of South Africa 18: 130–136.Google Scholar
  20. Fey, M.V. and J.B. Dixon. 1981. Synthesis and properties of poorly crystalline hydrated aluminous goethites. Clays and Clay Min. 29: 91–100.CrossRefGoogle Scholar
  21. Fitzpatrick, R.W. 1978. Occurrence and properties of iron and titanium oxides in soils along the eastern seaboard of South Africa. Ph.D. thesis, University of Natal.Google Scholar
  22. Fitzpatrick, R.W., and U. Schwertmann. 1982. Al-substituted goethite, an indicator of pedogenic and other weathering environments in South Africa. Geoderma 27: 335–347.CrossRefGoogle Scholar
  23. Gastuche, M.C., T. Bruggenwert, and M.M. Mortland. 1964. Crystallization of mixed iron and aluminum gels. Soil Sci. 98: 281–289.CrossRefGoogle Scholar
  24. Goodman, B.A., and D.G. Lewis. 1981. Mössbauer spectra of aluminous goethites (a-FeOOH). J. Soil Sci. 32: 351–363.CrossRefGoogle Scholar
  25. Henmi, T., N. Wells, C.W. Childs, and R.L. Parfitt. 1980. Poorly-ordered iron rich precipitates from springs and streams on andesitic volcanoes. Geochim. Cosmochim. Acta 44: 365–372.CrossRefGoogle Scholar
  26. Jenny, H. 1980. The soil resource: origin and behaviour. Ecological Studies 37. Springer-Verlag, New York.Google Scholar
  27. Jones, R.C., W.H. Hudnall, and W.S. Sakai. 1982. Some highly weathered soils of Puerto Rico, 2. Mineralogy. Geoderma 27: 75–137.CrossRefGoogle Scholar
  28. Kämpf, N. 1981. Die Eisenoxidmineralogie einer Klimasequenz von Böden aus Eruptiva in Rio Grande do Sul, Brasilien. Dissertation. T.U. München Weihenstephan, Germany.Google Scholar
  29. Kämpf, N., and U. Schwertmann. 1982. Goethite and hematite in a climo-sequence in southern Brazil and their application in classification of kaolinitic soils. Geoderma 29: 27–39.CrossRefGoogle Scholar
  30. Knight, R.J., and R.N. Sylva. 1974. Precipitation in hydrolysed iron(III) solutions. J. Inorg. Nucl. Chem. 36: 591–597.CrossRefGoogle Scholar
  31. Langmuir, D. 1971. Particle size effect on the reaction goethite = hematite + water. Am. J. Sci. 271: 147–156.CrossRefGoogle Scholar
  32. Langmuir, D. 1972. Correction: Particle size effect on the reaction goethite = hematite + water. Am. J. Sci. 272: 972.CrossRefGoogle Scholar
  33. Lewis, D.G., and U. Schwertmann. 1979. The influence of aluminum on the formation of iron oxides. IV. The influence of [Al], [OH], and temperature. Clays and Clay Min. 27: 195–200.CrossRefGoogle Scholar
  34. Loeppert, R.H. and L.R. Hossner. 1984. Reactions of Fe(II) and Fe(III) with calcite. Clays and Clay Min. 32: 213–222.CrossRefGoogle Scholar
  35. Murad, E. 1982. Ferrihydrite deposits on an artesian fountain in lower Bavaria. N. Jb. Miner. Mh., H 2, 45–56, Stuttgart.Google Scholar
  36. Murad, E. and U. Schwertmann. 1980. The Mössbauer spectrum of ferrihydrite and its relations to those of other iron oxides. Am. Min. 65: 1044–1049.Google Scholar
  37. Nahon, D., C. Janot, A.M. Karpoff, H. Paquet, and Y. Tardy. 1977. Mineralogy, petrography and structures of iron crusts (ferricretes) developed on sandstones in the western part of Sengal. Geoderma 19: 263–277.CrossRefGoogle Scholar
  38. Norrish, K. and R.M. Taylor. 1961. The isomorphous replacement of iron by aluminum in soil goethites. J. Soil Sci. 12: 294 - 306.CrossRefGoogle Scholar
  39. Peña, F., and J. Torrent. 1984. Relationships between phosphate sorption and iron oxides in Alflsols from a river terrace sequence of Mediterranean Spain. Geoderma 33: 265–282.CrossRefGoogle Scholar
  40. Ross, G.J. and C. Wang. 1982. Lepidocrocite in a calcareous, well drained soil. Clays and Clay Min. 30: 394–396.CrossRefGoogle Scholar
  41. Schulze, D.G. 1981. Identification of soil iron oxide minerals by differential X-ray diffraction. Soil Sci. Soc. Am. J. 45: 437–440.CrossRefGoogle Scholar
  42. Schulze, D.G. 1982. The identification of iron oxides by differential X-ray diffraction and the influence of aluminum substitution on the structure of goethite. Dissertation, T.U.-München.Google Scholar
  43. Schulze, D.G. 1984. The influence of aluminum on iron oxides VIII. Unit cell dimension of Al-substituted goethites and estimation of A1 from them. Clays and Clay Min. 32: 36–44.CrossRefGoogle Scholar
  44. Schulze, D.G., and U. Schwertmann. 1984. The influence of aluminum on iron oxides X. The properties of Al-substituted goethites. Clay Min. In press.Google Scholar
  45. Schwertmann, U. 1959. Die fraktionierte Extraktion der freien Eisen-oxide in Boden, ihre mineralogischen Formen und ihre Entstehungsweisen. Z. Pflanzenern., Düng., Bodenk., 84: 194–204.CrossRefGoogle Scholar
  46. Schwertmann, U. 1965. Zur Goethit—und Hämatitbildung aus amorphem Eisen(III)-hydroxid. 2. Mitteilung. Z. Pflanzenern., Düng., Bodenk., 108: 37–45.CrossRefGoogle Scholar
  47. Schwertmann, U. 1966. Inhibitory effect of soil organic matter on the crystallization of amorphous ferric hydroxide. Nature 212: 645–646.CrossRefGoogle Scholar
  48. Schwertmann, U. 1971. Transformation of hematite to goethite in soils. Nature 232: 624–625.PubMedCrossRefGoogle Scholar
  49. Schwertmann, U. 1973. Electron micrographs of soil lepidocrocites. Clay Min. 10: 59–63.CrossRefGoogle Scholar
  50. Schwertmann, U. 1984. The influence of aluminum on iron oxides IX. Dissolution of Al-goethites in 6 M HC1. Clay Min. 19: 9–19.CrossRefGoogle Scholar
  51. Schwertmann, U., and H. Fechter. 1983. The point of zero charge of natural and synthetic ferrihydrites and its relation to adsorbed silicate. Clay Min. 17: 471–476.CrossRefGoogle Scholar
  52. Schwertmann, U. and H. Fechter. 1984. The influence of aluminum on iron oxides. XI. Burning, a possible means of aluminum-substituted maghemite formation in soils. Soil Sci. Soc. Amer. J. 48:in press.Google Scholar
  53. Schwertmann, U., and W.R. Fischer. 1973. Natural “amorphous” ferric hydroxide. Geoderma 10: 237–247.CrossRefGoogle Scholar
  54. Schwertmann, U. and R.W. Fitzpatrick. 1977. Occurrence of lepidocrocite and its association with goethite in Natal soils. Soil Sci. Soc. Am. J. 41: 1013–1018.CrossRefGoogle Scholar
  55. Schwertmann, U., and B. Heinemann. 1959. Über das Vorkommen und die Entstehung von Maghemit in nordwestdeutschen Böden. Neues Jb. Min. Mh. 8: 174–181.Google Scholar
  56. Schwertmann, U. and N. Kämpf. 1983. Oxidos de Ferro Jovens em Ambientes Pedogenéticos Brasileiros. (Young iron oxides in Brazilian pedogenic environments) R. bras. Ci. Solo 7: 251–255.Google Scholar
  57. Schwertmann, U., and N. Kämpf. 1984a. Properties of goethite and hematite in kaolonitic soils of Southern and Central Brazil. Soil Sci. In press.Google Scholar
  58. Schwertmann, U., and E. Murad. 1983. The effect of pH on the formation of goethite and hematite from ferrihydrite. Clays and Clay Min. 31: 277–284.CrossRefGoogle Scholar
  59. Schwertmann, U., and E. Schieck. 1980. Das Verhalten von Phosphat in eisenoxidreichen Kalkgleyen der Münchener Schotterebene. Z. f. Pflanzenern. und Bodenk. 143: 391–401.CrossRefGoogle Scholar
  60. Schwertmann, U. and R.M. Taylor. 1977. Iron oxides. In: Minerals in soil environments, J.B. Dixon and S.B. Weed, eds. pp. 145–179. Soil Sci. Soc. Am., Madison, Wis. USA.Google Scholar
  61. Schwertmann, U. and R.M. Taylor. 1979. Natural and synthetic poorly crystallized lepidocrocite. Clay Min. 14: 285–293.CrossRefGoogle Scholar
  62. Schwertmann, U. and R.M. Taylor. 1981. The significance of oxides for the surface properties of soils and the usefulness of synthetic oxides as models for their study. Bull. Int. Soc. Soil Sci. No. 60: 62–66.Google Scholar
  63. Schwertmann, U. and H. Thalmann. 1976. The influence of Fe(II), Si and pH on the formation of lepidocrocite and ferrihydrite during oxidation of aqueous FeCl2 solutions. Clay Min. 11: 189–200.CrossRefGoogle Scholar
  64. Schwertmann, U., L. Carlson, and H. Fechter. 1984. Iron oxide formation in artificial ground waters. Schweiz. Zeitschr. Hydrologie, (submitted).Google Scholar
  65. Schwertmann, U., W.R. Fischer, and H. Papendorf. 1968. The influence of organic compounds on the formation of iron oxides. Trans. 9th. Int. Congr. Soil Sci., Adelaide, Australia. 1: 645–655.Google Scholar
  66. Schwertmann, U., R.W. Fitzpatrick, R.M. Taylor, and D.G. Lewis. 1979. The influence of aluminum on iron oxides. Part II. Preparation and properties of alsubstituted hematites. Clays and Clay Min. 27: 105–112.CrossRefGoogle Scholar
  67. Schwertmann, U., H. Kodama, and W.R. Fischer. 1984. Mutual interactions between organics and iron oxides. In: Interactions of soil minerals with natural organics and microbes. Soil Sci. Soc. Am., Madison, Wis. USA. In press.Google Scholar
  68. Schwertmann, U., E. Murad, and D.G. Schulze. 1982. Is there holocene reddening (hematite formation) in soils of axeric temperate areas? Geoderma 27: 209–223.CrossRefGoogle Scholar
  69. Süsser, P., and U. Schwertmann. 1983. Iron oxide mineralogy of ochreous deposits in drain pipes and ditches. Z. Kulturtechnik u. Flurbereinigung 24: 386–395.Google Scholar
  70. Taylor, R.M. 1980. Formation and properties of Fe(II) Fe(III) hydroxy-carbonate and its possible significance in soil formation. Clay Min. 15: 369–382.CrossRefGoogle Scholar
  71. Taylor, R.M. 1982. Colour in soils and sediments—a review. Int. Clay Conf. 1981. pp. 749–761.Google Scholar
  72. Taylor, R.M. 1984. Non silicate oxides: In: The chemistry of clays. Ed. Mineralogical Society, London. In press.Google Scholar
  73. Taylor, R.M., and A.M. Graley. 1967. The influence of ionic environments on the nature of iron oxides in soils. J. Soil Sci. 18: 341–348.CrossRefGoogle Scholar
  74. Taylor, R.M., and R.M. MacKenzie. 1980. The influence of aluminum on iron oxides VI. The formation of Fe(II)-Al(III) hydroxychlorides, -sulphates, and -carbonates as new members of the pyroaurite group and their significance in soils. Clays and Clay Min. 28: 179–187.CrossRefGoogle Scholar
  75. Taylor, R.M., R.M. MacKenzie, A.W. Fordham, and G.P. Gillman. 1983. Oxide minerals. CSIRO Div. Soils, Jubilee Book, Soils, an Australian viewpoint.Google Scholar
  76. Taylor, R.M., and U. Schwertmann. 1974. Maghemite in soils and its origin. I Properties and observations on soil maghemites. Clay Min. 10: 289 - 298.CrossRefGoogle Scholar
  77. Taylor, R.M., and U. Schwertmann. 1978. The influence of aluminum on iron oxides. Part I. The influence of A1 on Fe-oxide formation from the Fe(II) system. Clays and Clay Min. 26: 373–383.CrossRefGoogle Scholar
  78. Thiel, R. 1963. Zum System a-FeOOH-a-AlOOH. Z. anorg. allg. Chem. 326: 70–78.CrossRefGoogle Scholar
  79. Tipping, E., C. Woof, and D. Cooke. 1981. Iron oxide from a seasonally anoxic lake. Geochim. Cosmochim. Acta 45: 1411–1419.CrossRefGoogle Scholar
  80. Torrent, J., R. Guzmann and M.A. Parra. 1982. Influence of relative humidity on the crystallization of Fe(III) oxides from ferrihydrite. Clays and Clay Min. 30: 337–340.CrossRefGoogle Scholar
  81. Torrent, J., U. Schwertmann, H. Fechter, and F. Alferez. 1984. Quantitative relationships between soil colour and hematite content. Soil Sci. 136: 354–358.CrossRefGoogle Scholar
  82. Torrent, J., U. Schwertmann, and D.G. Schulze. 1980. Iron oxide mineralogy of some soils of two river terrace sequences in Spain. Geoderma 23: 191–208.CrossRefGoogle Scholar
  83. Towe, K.M. and W.F. Bradley. 1967. Mineralogical constitution of colloidal “hydrous ferric oxide.” J. Colloid Interface Sci. 24: 384–392.CrossRefGoogle Scholar
  84. Van der Marel, H.W. 1951. Gamma ferric oxide in sediments. J. Sediment Petrol. 21: 12–21.Google Scholar
  85. Williams. J. and R.J. Coventry. 1979. The contrasting hydrology of red and yellow earths in a landscape of low relief. In: The hydrology of areas of low precipitation. Proc. Symp. Canberry, Int. Assoc. Sci. Hydrol., Publ. 128: 385–395.Google Scholar
  86. Wolska, E. 1976. Über die Koexistenz der Aluminum- und Eisen(III)-hydroxideund-oxide. Mh. Chem. 107: 349–357.Google Scholar
  87. Yapp, C.J. 1983. Effects of AlOOH-FeOOH solid solution on goethite-hematite equilibrium. Clays and Clay Min. 31: 239–240.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1958

Authors and Affiliations

  • U. Schwertmann
    • 1
  1. 1.Institut für BodenkundeTechnische Universität München-WeihenstephanFreisingFederal Republic of Germany

Personalised recommendations