Advertisement

Convexity and Extremal Principles

  • Eberhard Zeidler

Abstract

In the preceding chapter we showed how existence propositions for extremal problems are obtained with the aid of compactness arguments. A second basic strategy for obtaining existence propositions consists in considering convexity instead of compactness. Figure 39.1 shows the logical connections. We place the Hahn-Banach theorem at the pinnacle; in the final analysis this theorem goes back to the central fixed point theorem of Bourbaki and Kneser, in Chapter 11, via Zorn’s lemma. The separation theorems for convex sets and the Krein extension theorem for positive functionals follow from the Hahn-Banach theorem. These three theorems are standard results of functional analysis. We summarize them in Section 39.1 without proofs. The proofs can be found, e.g., in Edwards (1965, M). In fact these three theorems, which are framed in Fig. 39.1, are mutually equivalent if they are appropriately formulated. They represent different conceptions of a general fundamental principle of geometric functional analysis, which finds its most suggestive geometrical form in the separation theorems for convex sets. These equivalences are discussed in Holmes (1975, M), page 95 (cf. Problem 39.13).

Keywords

Extreme Point Dual Problem Linear Subspace Separation Theorem Interpolation Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to the Literature

  1. Hahn, H. (1926): Uber lineare Gleichungssysteme in linearen Raumen. J. Reine Angew. Math. 157 (214–229).Google Scholar
  2. Banach, S. (1929): Sur les fonctionnelles lineaires, I; II. Studia Math. 1 (1929), 211–216;MATHGoogle Scholar
  3. Banach, S. (1929): Sur les fonctionnelles lineaires, I; II. Studia Math. 1 (1929), 223–239.MATHGoogle Scholar
  4. Krein, M. (1938): On positive functionals in linear normed spaces. In: Achieser, N. and Krein, M., On Some Problems of the Theory of Moments. GONTI, Charkov, ( Russian).Google Scholar
  5. Dieudonne, J. (1981): History of functional analysis. North-Holland, Amsterdam.MATHGoogle Scholar
  6. Holmes, R. (1975): Geometrical Functional Analysis. Springer-Verlag, Berlin.Google Scholar
  7. Klee, V. (1969): Separation and support properties of convex sets: a survey. In: Control Theory and Calculus of Variations. Balakrishnan, A. [ed.], Academic, New York, 1969, 235–304.Google Scholar
  8. Asimow, L. and Ellis, A. (1982): Convexity Theory and its Applications in Functional Analysis. Academic, New YorkGoogle Scholar
  9. Fuchsteiner, B. and Lusky, W. (1981): Convex Cones. North-Holland, Amsterdam. Fucik, S., Necas, J., Soucek, J., and Soucek, V. (1973): Spectral Analysis of Nonlinear Google Scholar
  10. Operators. Lecture Notes in Mathematics, Vol. 346. Springer-Verlag, Berlin.Google Scholar
  11. Beauzamy, B. (1982): Introduction to Banach Spaces and Their Geometry. North-Holland, Amsterdam.MATHGoogle Scholar
  12. Collatz, L. (1964): Funktionalanalysis und numerische Mathematik. Springer-Verlag, Berlin.CrossRefMATHGoogle Scholar
  13. Meinardus, G. (1964): Approximation von Funktionen und ihre numerische Behand- lung. Springer-Verlag, Berlin. (English edition: Approximation of Functions: Theory and Numerical Methods. Springer-Verlag, New York, 1967.)Google Scholar
  14. Cheney, E. (1966): Introduction to Approximation Theory. McGraw-Hill, New York.MATHGoogle Scholar
  15. Collatz, L. and Krabs, W. (1973): Approximationstheorie. Teubner, Stuttgart.MATHGoogle Scholar
  16. Sauer, R. and Szabo, I. (1967): Mathematische Hilfsmittel des Ingenieurs, Vols. 1–4. Springer-Verlag, Berlin, 1967–1970.CrossRefGoogle Scholar
  17. Thacher, H. and Witzgall, C. (1968): Computer Approximations. Wiley, New York.Google Scholar
  18. Luke, Y. (1975): Mathematical Functions and Their Approximations. Academic, New York.MATHGoogle Scholar
  19. Luenberger, D. (1969): Optimization by Vector Space Methods. Wiley, New York.MATHGoogle Scholar
  20. Varga, R. (1971): Functional Analysis and Approximation Theory in Numerical Analysis. SI AM, Philadelphia.Google Scholar
  21. Holmes, R. (1972): A Course on Optimization and Best Approximation. Lecture Notes in Mathematics, Vol. 257. Springer-Verlag, Berlin.Google Scholar
  22. Singer, I. (1970): Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces. Springer-Verlag, Berlin.MATHGoogle Scholar
  23. Laurent, P. (1972): Approximation et optimisation. Hermann, Paris.MATHGoogle Scholar
  24. Kiesewetter, H. (1973): Vorlesungen uber lineare Approximation. VEB Dt. Verl. d. Wiss., Berlin.Google Scholar
  25. Holmes, R. (1972): A Course on Optimization and Best Approximation. Lecture Notes in Mathematics, Vol. 257. Springer-Verlag, Berlin.Google Scholar
  26. Holmes, R. (1975): Geometrical Functional Analysis. Springer-Verlag, Berlin.Google Scholar
  27. Laurent, P. (1972): Approximation et optimisation. Hermann, Paris.MATHGoogle Scholar
  28. Krabs, W. (1975): Optimierung und Approximation. Teubner, Stuttgart. (English edition: Optimization and Approximation. Wiley, New York, 1979.)Google Scholar
  29. Berezin, I. and Zidkov, N. (1966): Numerical Methods. Nauka, Moscow (Russian). (German edition: VEB Dt. Verl. d. Wiss., Vols. 1, 2. Berlin, 1970–1971.)Google Scholar
  30. Isaacson, E. and Keller, H. (1966): Analysis of Numerical Methods. Wiley, New York. (German edition: Edition Leipzig, 1972.)Google Scholar
  31. Kiesewetter, H. (1973): Vorlesungen uber lineare Approximation. VEB Dt. Verl. d. Wiss., Berlin.Google Scholar
  32. Engels, H. (1980): Numerical Quadrature and Cubature. Academic, New York.MATHGoogle Scholar
  33. Meinardus, G. (1964): Approximation von Funktionen und ihre numerische Behand- lung. Springer-Verlag, Berlin. (English edition: Approximation of Functions: Theory and Numerical Methods. Springer-Verlag, New York, 1967.)Google Scholar
  34. Cheney, E. (1966): Introduction to Approximation Theory. McGraw-Hill, New York.MATHGoogle Scholar
  35. Remes, E. (1969): The Foundations of Numerical Methods of the Chebyshev Approximation. Naukova Dumka, Kiev (Russian).Google Scholar
  36. Rivlin, T. (1969): An Introduction to the Approximation of Functions. Blaisdell, Waltham, MA.Google Scholar
  37. Schonhage, A. (1971): Appromationstheorie. De Gruyter, Berlin.CrossRefGoogle Scholar
  38. Laurent, P. (1972): Approximation et optimisation. Hermann, Paris.MATHGoogle Scholar
  39. Collatz, L. and Krabs, W. (1973): Approximationstheorie. Teubner, Stuttgart.MATHGoogle Scholar
  40. Dzjadyk, V. (1977): Introduction to the Theory of Uniform Approximation of Functions by Polynomials. Nauka, Moscow (Russian).Google Scholar
  41. Meinardus, G. (1964): Approximation von Funktionen und ihre numerische Behand- lung. Springer-Verlag, Berlin. (English edition: Approximation of Functions: Theory and Numerical Methods. Springer-Verlag, New York, 1967.)Google Scholar
  42. Cheney, E. (1966): Introduction to Approximation Theory. McGraw-Hill, New York.MATHGoogle Scholar
  43. Collatz, L. and Krabs, W. (1973): Approximationstheorie. Teubner, Stuttgart.MATHGoogle Scholar
  44. Baker, G. and Gammel, J. (1970): The Pade Approximation in Theoretical Physics. Academic, New York.Google Scholar
  45. Saff, R. and Varga, R. [eds.] (1977): Pade and Rational Approximation. Academic, New York.MATHGoogle Scholar
  46. Baker, G. (1975): Essentials of Pade's Approximants. Academic, New York.Google Scholar
  47. Baker, C. and Morris, P. (1981): Pade Approximants, Vols. 1, 2. Addison-Wesley, New York.Google Scholar
  48. Collatz, L. and Krabs, W. (1973): Approximationstheorie. Teubner, Stuttgart.MATHGoogle Scholar
  49. Krabs, W. (1975): Optimierung und Approximation. Teubner, Stuttgart. (English edition: Optimization and Approximation. Wiley, New York, 1979.)Google Scholar
  50. Varga, R. (1971): Functional Analysis and Approximation Theory in Numerical Analysis. SI AM, Philadelphia.Google Scholar
  51. Laurent, P. (1972): Approximation et optimisation. Hermann, Paris.MATHGoogle Scholar
  52. Schultz, M. (1973): Spline Analysis. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  53. Prenter, P. (1975): Splines and Variational Methods. Wiley, New York.MATHGoogle Scholar
  54. Boor, C. de (1978): A Practical Guide to Splines. Springer-Verlag, New York.CrossRefMATHGoogle Scholar
  55. Cheney, E. (1966): Introduction to Approximation Theory. McGraw-Hill, New York.MATHGoogle Scholar
  56. Ben-Israel, A. and Greville, T. (1973): Generalized Inverses. Wiley, New York.Google Scholar
  57. Marcuk, G. and Kuznecov, J. (1975): Iteration methods and quadratic junctionals (Russian). In: Lions, J. and Marcuk, G. [eds.] (1975), 4–143.Google Scholar
  58. Nashed, M. [ed.] (1976): Generalized Inverses and Applications. Academic, New York.MATHGoogle Scholar
  59. Karlin, S. and Studden, W. (1966): Tchebycheff Systems with Applications in Analysis and Statistics. Interscience, New York.MATHGoogle Scholar
  60. Luenberger, D. (1969): Optimization by Vector Space Methods. Wiley, New York.MATHGoogle Scholar
  61. Rozanov, J. (1975): Stochastische Prozesse. Akadamie-Verlag, Berlin.MATHGoogle Scholar
  62. Rockafellar, R. (1970): Convex Analysis. Princeton University Press, Princeton, NJ.Google Scholar
  63. Holmes, R. (1975): Geometrical Functional Analysis. Springer-Verlag, Berlin.Google Scholar
  64. Marti, J. (1977): Konvexe Analysis. Birkhauser, Basel.CrossRefMATHGoogle Scholar
  65. Gwinner, J. (1981): On fixed points and variational inequalities: A circular tour. Nonlinear Analysis 5 (565–583).Google Scholar
  66. Konig, H. (1982): On basic concepts in convex analysis. In: Korte [ed.] (1982), 107–144.Google Scholar
  67. Cheney, E. (1966): Introduction to Approximation Theory. McGraw-Hill, New York.MATHGoogle Scholar
  68. Hofmann, G. (1981): On the existence of quantum fields in space time dimension 4. Rep. Math. Phys. 18, 2 (129–141).Google Scholar
  69. Konig, H. (1982): On basic concepts in convex analysis. In: Korte [ed.] (1982), 107–144.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Eberhard Zeidler
    • 1
  1. 1.Sektion MathematikLeipzigGerman Democratic Republic

Personalised recommendations