Skip to main content
  • 2381 Accesses

Abstract

In the following we wish to present many concrete examples, foregoing extensive technical details, whose solutions have contributed essentially to the development of a general theory of extremal problems. A glance at the organization of this chapter in the Contents shows the variety of different problems one encounters. In this connection, an especially central position is assumed by Section 37.4, where we discuss a number of fundamental ideas from the classical calculus of variations. The ideas of the calculus of variations have influenced the modern theory of extremal problems in an essential way, and knowledge of these classical ideas is indispensable for a thorough understanding of the modern development.

When I was a student it was fashionable to give courses called “Elementary Mathematics from the Higher Point of View” ... . But what I needed was a few courses called “Higher Mathematics from the Elementary Point of View.”

Joel Franklin

In the occupation with mathematical problems, a more important role than generalization is played—I believe—by specialization.

David Hilbert

There are two ways to teach mathematics. One is to take real pains toward creating understanding—visual aids, that sort of thing. The other is the old British system of teaching until you’re blue in the face.

James R. Newman, compiler of the 2,535 page The World of Mathematics, quoted in the New York Times, Sept. 30,1956

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to the Literature

  • Rockafellar, R. (1970): Convex Analysis. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Roberts, A. and Varberg, D. (1973): Convex Functions. Academic, New York.

    MATH  Google Scholar 

  • Holmes, R. (1972): A Course on Optimization and Best Approximation. Lecture Notes in Mathematics, Vol. 257. Springer-Verlag, Berlin.

    Google Scholar 

  • Holmes, R. (1975): Geometrical Functional Analysis. Springer-Verlag, Berlin.

    Google Scholar 

  • Ekeland, I. and Temam, R. (1974): Analyse convexe et problemes variationnels. Dunod, Paris. (English edition: North-Holland, Amsterdam, 1976.)

    Google Scholar 

  • Marti, J. (1977): Konvexe Analysis. Birkhauser, Basel.

    MATH  Google Scholar 

  • Hestenes, M. (1966): Calculus of Variations and Optimal Control Theory. Wiley, New York.

    MATH  Google Scholar 

  • Boltjanskii, V. (1976): Optimale Steuerung diskreter Systeme. Geest & Portig, Leipzig. (English edition: Optimal Control of Discrete Systems. Halsted, New York, 1978.)

    Google Scholar 

  • Funk, P. (1962): Variationsrechnung und ihre Anwendung in Physik und Technik. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Petrov, J. (1977): Variational Methods of the Theory of Optimal Control. Energija, Leningrad (Russian). (English edition: Academic, New York, 1968.)

    Google Scholar 

  • Goldstine, H. (1980): A History of the Calculus of Variations. From the 17th Century through the 19th Century. Springer-Verlag, New York.

    MATH  Google Scholar 

  • McShane, E. (1978): The calculus of variations from the beginning through optimal control theory. In: Optimal Control and Differential Equations. A. Schwarzkopf [ed.], Academic, New York, 3–49.

    Google Scholar 

  • Courant, R. and Hilbert, D. (1953): Methods of Mathematical Physics, Vols. 1, 2. Interscience, New York, 1953–1962.

    Google Scholar 

  • Gelfand, I. and Fomin, S. (1961): Calculus of Variations. Nauka, Moscow (Russian).

    Google Scholar 

  • Bliss, G. (1951): Lectures on the Calculus of Variations. University of Chicago Press, Chicago.

    Google Scholar 

  • Funk, P. (1962): Variationsrechnung und ihre Anwendung in Physik und Technik. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Rund, H. (1966): The Hamilton-Jacobi theory in the calculus of variations. Van Nostrand, London.

    MATH  Google Scholar 

  • Klotzler, R. (1971): Mehrdimensionale Variationsrechnung. VEB Dt. Verl. d. Wiss., Berlin.

    Google Scholar 

  • Caratheodory, C. (1935): Variationsrechnung und partielle Differentialgleichungen erster Ordnung. Teubner, Leipzig, 1935, 1956.

    Google Scholar 

  • Frank, P. and Mises, R. von (1961): Die Differential- und Integralgleichungen der Mechanik und Physik. Dover, New York; Vieweg, Braunschweig.

    Google Scholar 

  • Bolza, O. (1949): Vorlesungen uber Variationsrechnung. Koehler and Amelang, Leipzig.

    Google Scholar 

  • Funk, P. (1962): Variationsrechnung und ihre Anwendung in Physik und Technik. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Ioffe, A. and Tihomirov, V. (1974): Theory of Extremal Problems. Nauka, Moscow (Russian). (German edition: VEB Dt. Verl. d. Wiss., Berlin, 1979. English edition: North-Holland, New York, 1978.)

    Google Scholar 

  • Lions, P. (1982): Generalized solutions of Hamilton-Jacobi equations. Pitman, London.

    MATH  Google Scholar 

  • Sommerfeld, A. (1962): Vorlesungen uber theoretische Physik, Vols. 1–6. Geest & Portig, Leipzig.

    Google Scholar 

  • Landau, L. and Lifsic, E. (1962): Course of Theoretical Physics. Pergamon, Oxford. (German edition: Lehrbuch der theoretischen Physik, Vols. 1–10. Akademie-Verlag, Berlin, 1962ff.)

    Google Scholar 

  • Arnold, V. (1974): Mathematical Methods of Classical Mechanics. Nauka, Moscow (Russian). (English edition: Springer-Verlag, Berlin, 1978.)

    Google Scholar 

  • Landau, L. and Lifsic, E. (1962): Course of Theoretical Physics. Pergamon, Oxford. (German edition: Lehrbuch der theoretischen Physik, Vols. 1–10. Akademie-Verlag, Berlin, 1962ff.)

    Google Scholar 

  • Courant, R. and Hilbert, D. (1953): Methods of Mathematical Physics, Vols. 1, 2. Interscience, New York, 1953–1962.

    Google Scholar 

  • Gelfand, I. and Fomin, S. (1961): Calculus of Variations. Nauka, Moscow (Russian).

    Google Scholar 

  • Klotzler, R. (1971): Mehrdimensionale Variationsrechnung. VEB Dt. Verl. d. Wiss., Berlin.

    Google Scholar 

  • Rund, H. (1966): The Hamilton-Jacobi theory in the calculus of variations. Van Nostrand, London.

    MATH  Google Scholar 

  • Klotzler, R. (1971): Mehrdimensionale Variationsrechnung. VEB Dt. Verl. d. Wiss., Berlin.

    Google Scholar 

  • Ladyzenskaja, O. and Uralceva, N. (1964): Linear and Quasilinear Equations of Elliptic Type, 2nd ed., 1973, Nauka, Moscow (Russian). (English edition: Academic, New York, 1968.)

    Google Scholar 

  • Morrey, C. (1966): Multiple Integrals in the Calculus of Variations. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Gilbarg, D. and Trudinger, N. (1977): Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin (second enlarged edition, 1984 ).

    MATH  Google Scholar 

  • Giaquinta, M. (1981): Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. University of Bonn, Lecture Notes No. 443, Sonder-forschungsbereich 72, Bonn, Germany.

    Google Scholar 

  • Frehse, J. (1982): Capacity methods in the theory of partial differential equations. Jahresbericht der Deutschen Mathematikervereinigung 84 (1–44).

    MathSciNet  MATH  Google Scholar 

  • Necas, J. (1983): Introduction to the Theory of Nonlinear Elliptic Partial Differential Equations. Teubner, Leipzig.

    Google Scholar 

  • Michlin, S. (1962): Variationsmethoden der mathematischen Physik. Akademie-Verlag, Berlin.

    MATH  Google Scholar 

  • Nitsche, J. (1975): Vorlesungen uber Minimalflachen. Springer-Verlag, Berlin.

    Google Scholar 

  • Gilbarg, D. and Trudinger, N. (1977): Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin (second enlarged edition, 1984 ).

    MATH  Google Scholar 

  • Ladyzenskaja, O. and Uralceva, N. (1964): Linear and Quasilinear Equations of Elliptic Type, 2nd ed., 1973, Nauka, Moscow (Russian). (English edition: Academic, New York, 1968.)

    Google Scholar 

  • Funk, P. (1962): Variationsrechnung und ihre Anwendung in Physik und Technik. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Goldstine, H. (1980): A History of the Calculus of Variations. From the 17th Century through the 19th Century. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Aleksandrov, P. [ed.] (1971): Die Hilbertschen Problem. Geest & Portig, Leipzig.

    Google Scholar 

  • Browder, F. [ed.] (1976): Mathematical Developments Arising from Hilberfs Problems. American Mathematical Society, New York.

    Google Scholar 

  • Courant, R. and Hilbert, D. (1953): Methods of Mathematical Physics, Vols. 1, 2. Interscience, New York, 1953–1962.

    Google Scholar 

  • Klotzler, R. (1971): Mehrdimensionale Variationsrechnung. VEB Dt. Verl. d. Wiss., Berlin.

    Google Scholar 

  • Ioffe, A. and Tihomirov, V. (1974): Theory of Extremal Problems. Nauka, Moscow (Russian). (German edition: VEB Dt. Verl. d. Wiss., Berlin, 1979. English edition: North-Holland, New York, 1978.)

    Google Scholar 

  • Michlin, S. (1962): Variationsmethoden der mathematischen Physik. Akademie-Verlag, Berlin.

    MATH  Google Scholar 

  • Collatz, L. (1963): Eigenwertaufgaben mit technischen Anwendungen. Geest & Portig, Leipzig.

    Google Scholar 

  • Fichera, G. (1964): Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno. Atti. Accad. Naz. Lincei Mem. CI. Sci. Fis. Mat. Natur. Sez. 1(8) 7 (91–140).

    Google Scholar 

  • Stampacchia, G. (1965): Le probleme de Dirichlet pour les equations elliptiques du second ordre a coefficients discontinus. Ann. Inst. Fourier 15 (189–259).

    MathSciNet  MATH  Google Scholar 

  • Hartman, P. and Stampacchia, G. (1966): On some non-linear elliptic differential functional equations. Acta Math. 115 (271–310).

    MathSciNet  MATH  Google Scholar 

  • Browder, F. (1966): On the unification of the calculus of variations and the theory of monotone nonlinear operators in Banach spaces. Proc. Nat. Acad. Sci. USA 56 (419–425).

    MathSciNet  MATH  Google Scholar 

  • Lions, J. (1969): Quelques methodes de resolution des problemes aux limites non lineaires. Dunod, Paris; Gauthier-Villars, Paris.

    Google Scholar 

  • Lions, J. (1971): Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Kinderlehrer, D. and Stampacchia, G. (1980): An Introduction to Variational Inequalities and Their Application. Academic, New York.

    Google Scholar 

  • Lions, J. (1971): Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Baiocchi, C. and Capelo, A. (1978): Disequazioni variazionali e quasivariazionali, Vols. 1, 2. Pitagora, Bologna.

    Google Scholar 

  • Bensoussan, A. and Lions, J. [eds.] (1978): Applications des inequations variation-nelles en controle stochastique. Dunod, Paris; Bordas, Paris. (English edition: North-Holland, Amsterdam, 1981.)

    Google Scholar 

  • Aubin, J. (1979): Mathematical Methods of Game and Economic Theory. North-Holland, Amsterdam.

    MATH  Google Scholar 

  • Kinderlehrer, D. and Stampacchia, G. (1980): An Introduction to Variational Inequalities and Their Application. Academic, New York.Friedman ( 1982, M, B )

    Google Scholar 

  • Glowinski, R., Lions, J., and Tremolieres, R. (1976): Analyse numerique des inequations variationnelles, Vols. 1, 2. Gauthier-Villars, Paris.

    Google Scholar 

  • Neumann, J. von (1928): Zur Theorie der Gesellschaftsspiele. Math. Ann. 100 (295–320).

    MathSciNet  MATH  Google Scholar 

  • Neumann, J. von and Morgenstern, O. (1944): Theory of Games and Economic Behavior. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Collatz, L. and Wetterling, W. (1966): Optimierungsaufgaben. Springer-Verlag, Berlin (Second enlarged edition, 1971; English edition: Springer, New York, 1975 ).

    MATH  Google Scholar 

  • Burger, E. (1959): Einfuhrung in die Theorie der Spiele. De Gruyter, Berlin.

    Google Scholar 

  • Owen, G. (1968): Game Theory. Saunders, Philadelphia. (German edition: Springer-Verlag, Berlin, 1971.)

    Google Scholar 

  • Vorobjov, N. (1970): The present state of game theory. Uspehi Mat. Nauk 25, 2 (81–140) (Russian).

    MathSciNet  Google Scholar 

  • Friedman, A. (1971): Differential Games. Wiley, New York.

    MATH  Google Scholar 

  • Friedman, A. (1974): Differential Games. American Mathematical Society, Providence, RI.

    Google Scholar 

  • Friedman, A. (1975): Stochastic Differential Equations and Applications, Vols. 1, 2. Academic, New York, 1975–1976.

    Google Scholar 

  • Aubin, J. (1979): Mathematical Methods of Game and Economic Theory. North-Holland, Amsterdam.

    MATH  Google Scholar 

  • Neumann, J. von and Morgenstern, O. (1944): Theory of Games and Economic Behavior. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Karlin, S. (1959): Mathematical Methods and Theory in Games, Programming and Economics, Vols. 1, 2. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Aubin, J. (1979): Mathematical Methods of Game and Economic Theory. North-Holland, Amsterdam.

    MATH  Google Scholar 

  • Vorobjov, N. (1975) Entwicklung der Spieltheorie. VEB Dt. Verlag der Wiss., Berlin.

    Google Scholar 

  • Trefftz, E. (1927): Ein Gegenstuck zum Ritzschen Verfahren. In: Verh. des II. Intern. Kongresses fur Technische Mechanik, Zurich, p. 131.

    Google Scholar 

  • Friedrichs, K. (1929): Ein Verfahren der Variationsrechnung, das Minimum eines Integrals als das Maximum eines anderen Ausdrucks darzustellen. Nachr. Ges. Wiss. Gottingen, Math.-phys. Kl. 13–27.

    Google Scholar 

  • Courant, R. and Hilbert, D. (1953): Methods of Mathematical Physics, Vols. 1, 2. Interscience, New York, 1953–1962.

    Google Scholar 

  • Michlin, S. (1962): Variationsmethoden der mathematischen Physik. Akademie-Verlag, Berlin.

    MATH  Google Scholar 

  • Michlin, S. (1969): Numerische Realisierung von Variations methoden. Akademie-Verlag, Berlin.

    Google Scholar 

  • Michlin, S. and Smolickij, C. (1969): Naherungsmethoden zur Losung von Differential- und Integralgleichungen. Teubner, Leipzig.

    Google Scholar 

  • Velte, W. (1976): Direkte Methoden der Variationsrechnung. Teubner, Stuttgart.

    MATH  Google Scholar 

  • Dantzig, G. (1949): Programming of interdependent activities. Econometrica 17 (200–211).

    MathSciNet  Google Scholar 

  • Kantorovic, L. (1939): Mathematical methods in the organization and planning of production. Leningrad. (English version in: Management Sci. 6 (1960), (366–422).

    MathSciNet  Google Scholar 

  • Collatz, L. and Wetterling, W. (1966): Optimierungsaufgaben. Springer-Verlag, Berlin (Second enlarged edition, 1971; English edition: Springer, New York, 1975 ).

    MATH  Google Scholar 

  • BronStein, I. and Semendjaev, K. (1979): Taschenbuch der Mathematik, Vols. 1, 2. Teubner, Leipzig.

    Google Scholar 

  • Dantzig, G. (1963): Linear Programming and Extensions. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Vogel, W. (1967): Lineares Optimieren. Geest & Portig, Leipzig.

    MATH  Google Scholar 

  • Suhovickii, S. and Avdeeva, L. (1969): Lineare und konvexe Programmierung. Oldenbourg, München.

    Google Scholar 

  • Glashoff, K., and Gustafson, S. (1978): Einfuhrung in die lineare Optimierung. Wiss. Buchges., Darmstadt.

    Google Scholar 

  • Foulds, L. (1981): Optimization Techniques. Springer-Verlag, New York.

    MATH  Google Scholar 

  • John, F. (1948): Extremum problems with inequalities as subsidiary conditions. In: Studies and Essays Presented to R. Courant. Interscience, New York, 187–204.

    Google Scholar 

  • Kuhn, H. and Tucker, A. (1951): Nonlinear programming. In: Proc. Second Berkeley Symp. on Math. Statistics and Probability. University of Calif. Press, Berkeley, 481–492.

    Google Scholar 

  • Collatz, L. and Wetterling, W. (1966): Optimierungsaufgaben. Springer-Verlag, Berlin (Second enlarged edition, 1971; English edition: Springer, New York, 1975 ).

    MATH  Google Scholar 

  • Dixon, L., Spedicato, E., and Szego, G. (1980): Nonlinear Optimization. Theory and Algorithms. Birkhauser, Boston.

    MATH  Google Scholar 

  • Arrow, K., Hurwicz, L., and Uzawa, H. (1958): Studies in Linear and Nonlinear Programming. Stanford University Press, Stanford, CA.

    Google Scholar 

  • Hadley, G. (1963): Nonlinear and Dynamic Programming. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Stoer, J. and Witzgall, C. (1970): Convexity and Optimization in Finite Dimensions. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Kreko, B. (1974): Optimierung — nichtlineare Modelle. VEB Dt. Verl. d. Wiss., Berlin.

    Google Scholar 

  • Martos, B. (1975): Nonlinear Programming: Theory and Methods. Akad. Kiado, Budapest.

    Google Scholar 

  • Blum, E. and Oettli, W. (1975): Mathematische Optimierung. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Elster, K. et al. (1977): Einfikhrung in die nichtlineare Optimierung. Teubner, Leipzig.

    Google Scholar 

  • Polak, E. (1971): Computational Methods in Optimization. Academic, New York.

    Google Scholar 

  • Grossmann, C. and Kleinmichel, H. (1976): Verfahren der nichtlinearen Optimierung. Teubner, Leipzig.

    MATH  Google Scholar 

  • Psenicnyi, B. and Danilin, J. (1979): Numerical Methods in Extremal Problems. Mir, Moscow (Russian).

    Google Scholar 

  • Fletcher, R. (1980): Practical Methods of Optimization. Vols. 1, 2. Wiley, Chichester.

    Google Scholar 

  • Karlin, S. (1959): Mathematical Methods and Theory in Games, Programming and Economics, Vols. 1, 2. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Aubin, J. (1979): Mathematical Methods of Game and Economic Theory. North-Holland, Amsterdam.

    MATH  Google Scholar 

  • Collatz, L. and Krabs, W. (1973): Approximationstheorie. Teubner, Stuttgart.

    MATH  Google Scholar 

  • Krabs, W. (1975): Optimierung und Approximation. Teubner, Stuttgart. (English edition: Optimization and Approximation. Wiley, New York, 1979.)

    Google Scholar 

  • Cheney, E. (1966): Introduction to Approximation Theory. McGraw-Hill, New York.

    MATH  Google Scholar 

  • Holmes, R. (1972): A Course on Optimization and Best Approximation. Lecture Notes in Mathematics, Vol. 257. Springer-Verlag, Berlin.

    Google Scholar 

  • Laurent, P. (1972): Approximation et optimisation. Hermann, Paris.

    MATH  Google Scholar 

  • Collatz, L. and Krabs, W. (1973): Approximationstheorie. Teubner, Stuttgart.

    MATH  Google Scholar 

  • Dreszer, J. (1975): Mathematik-Handbuch fur Technik und Naturwissenschaft. Fach-buchverlag, Leipzig.

    Google Scholar 

  • Linnik, J. (1961): Die Methode der kleinsten Quadrate. VEB Dt. Verl. d. Wiss., Berlin.

    Google Scholar 

  • Schmetterer, L. (1966): Einfuhrung in die mathematische Statistik. Springer-Verlag, Wien.

    Google Scholar 

  • Luenberger, D. (1969): Optimization by Vector Space Methods. Wiley, New York.

    MATH  Google Scholar 

  • Rozanov, J. (1975): Stochastische Prozesse. Akadamie-Verlag, Berlin.

    MATH  Google Scholar 

  • Grossmann, W. (1969): Grundzuge der Ausgleichsrechnung. Springer-Verlag, Berlin.

    Google Scholar 

  • Ludwig, R. (1969): Methoden der Fehler- und Ausgleichsrechnung. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Uberla, K. (1968): Faktoranalyse. Springer-Verlag, Berlin.

    Google Scholar 

  • Focke, J. (1984): Maximum-Likelihood-Schatzungen bei semidefiniten Faktormodellen. Mathem. Operationsforschung und Statistik, Ser. Statistics (to appear).

    Google Scholar 

  • Bengtsson, L. et al. [eds.] (1981): Dynamic Meteorology. Springer-Verlag, New York.

    Google Scholar 

  • Luenberger, D. (1969): Optimization by Vector Space Methods. Wiley, New York.

    MATH  Google Scholar 

  • Hadamard, J. (1902): Sur les problemes aux derivees partielles et leur signification physique. Bull. Univ. Princeton, 49–52.

    Google Scholar 

  • Hadamard, J. (1932): Lectures on Cauchy’s Problem. Yale University Press, New Haven, CT. 1923. (French edition: Le probleme de Cauchy et les equations aux derivees partielles lineaires hyperboliques. Hermann, Paris, 1932.)

    Google Scholar 

  • Picard, E. (1910): Sur un theoreme generate relatif aux equations integrates de premiere espece et sur quelques problemes de physique mathematique. Rend. Circ. Mat. Palermo 29 (615–619).

    Google Scholar 

  • Moore, E. (1920): On the reciprocal of the general matrix. Bull. Amer. Math. Soc. 26 (394–395).

    Google Scholar 

  • Penrose, R. (1955): A generalized inverse for matrices. Proc. Cambridge Phil. Soc. 51 (406–413).

    MathSciNet  MATH  Google Scholar 

  • Penrose, R. (1956): On best approximate solutions of linear matrix equations. Proc. Cambridge Phil. Soc. 52 (17–19).

    MathSciNet  MATH  Google Scholar 

  • Tihonov, A. (1963): On the solution of ill-posed problems. Doklady Akad. Nauk SSSR 151 (501–504) (Russian).

    MathSciNet  Google Scholar 

  • Tihonov, A. and Arsenin, V. (1977): Solution of Ill-Posed Problems. Wiley, New York.

    Google Scholar 

  • Luenberger, D. (1969): Optimization by Vector Space Methods. Wiley, New York.

    MATH  Google Scholar 

  • Ben-Israel, A. and Greville, T. (1973): Generalized Inverses. Wiley, New York.

    Google Scholar 

  • Marcuk, G. and Kuznecov, J. (1975): Iteration methods and quadratic junctionals (Russian). In: Lions, J. and Marcuk, G. [eds.] (1975), 4–143.

    Google Scholar 

  • Nashed, M. [ed.] (1976): Generalized Inverses and Applications. Academic, New York.

    MATH  Google Scholar 

  • Lavrentjev, M., Romanov, V., and Vasiljev, Z. (1969): Multidimensional Inverse Problems for Differential Equations. Nauka, Novosibirsk (Russian).

    Google Scholar 

  • Lattes, R. and Lions, J. (1969): The Method of Quasireversibility. Gordon and Breach, New York.

    Google Scholar 

  • Payne, L. (1975): Improperly Posed Problems in Partial Differential Equations. SIAM, Philadelphia.

    MATH  Google Scholar 

  • Tihonov, A. and Arsenin, V. (1977): Solution of Ill-Posed Problems. Wiley, New York.

    Google Scholar 

  • Anger, G. [ed.] (1979): Inverse and Improperly Posed Problems in Differential Equations. Akademie-Verlag, Berlin.

    MATH  Google Scholar 

  • Lions, J. (1969): Quelques methodes de resolution des problemes aux limites non lineaires. Dunod, Paris; Gauthier-Villars, Paris.

    Google Scholar 

  • Lattes, R. and Lions, J. (1969): The Method of Quasireversibility. Gordon and Breach, New York.

    Google Scholar 

  • Morozov, V. (1973): Linear and nonlinear ill-posed problems. Itogi Nauki i Tehniki, Matemat. Analiz 11 (129–178) (Russian).

    Google Scholar 

  • Tihonov, A. and Arsenin, V. (1977): Solution of Ill-Posed Problems. Wiley, New York.

    Google Scholar 

  • Ivanov, B. et al. (1978): Theory of Linear Regularization and Its Applications. Nauka, Moscow (Russian).

    Google Scholar 

  • Kluge, R. (1979): Nichtlineare Variationsungleichungen und Extremalaufgaben. VEB Dt. Verl. d. Wiss., Berlin.

    Google Scholar 

  • Anger, G. [ed.] (1979): Inverse and Improperly Posed Problems in Differential Equations. Akademie-Verlag, Berlin.

    MATH  Google Scholar 

  • Vainikko, G. (1980): Error estimates for the method of successive approximations in ill-posed problems. Avtomat. i Telemeh. 3 (84–91) (Russian).

    MathSciNet  Google Scholar 

  • R. and Spingarn, K. (1982): Control, Identification and Imput Optimization. Plenum, New York.

    Google Scholar 

  • Polis, M. and Goodson, R. (1974): Parameter identification in distributed systems: a synthesizing overview. In: Identification of Parameters in Distributed Systems. R. Goodson and M. Polis [eds.]. American Society of Mechanical Engineers, New York, 1974, 1–30.

    Google Scholar 

  • Kubrusly, C. (1977): Distributed parameter system identification: a survey. Int. J. Control 26 (509–535).

    Google Scholar 

  • Seidman, T. (1977): Observation and prediction for the heat equation. SIAM J. Control Optim. 15 (412–427).

    MathSciNet  MATH  Google Scholar 

  • Seidman, T. (1979): Ill-posed problems arising in boundary control and observation for diffusion equations. In: Anger, G. [ed.] (1979), 233–247.

    Google Scholar 

  • Kluge, R. (1979): Nichtlineare Variationsungleichungen und Extremalaufgaben. VEB Dt. Verl. d. Wiss., Berlin.

    Google Scholar 

  • Nurnberg, R. (1979): On the determination of functional parameters in nonlinear evolution equations of the Navier-Stokes type. In: Anger, G. [ed.] (1979), 189–196.

    Google Scholar 

  • Kluge, R. [ed.] (1978): Theory of Nonlinear Operators. Akademie-Verlag, Berlin.

    MATH  Google Scholar 

  • Anger, G. [ed.] (1979): Inverse and Improperly Posed Problems in Differential Equations. Akademie-Verlag, Berlin.

    MATH  Google Scholar 

  • Deuflhard, P. and Hairer, E. [eds.] (1983): Workshop on Numerical Treatment of Inverse Problems in Differential and Integral Equations (to appear).

    Google Scholar 

  • Nashed, M. [ed.] (1976): Generalized Inverses and Applications. Academic, New York.

    MATH  Google Scholar 

  • Tzafestas, S. [ed.] (1980): Simulation of Distributed Parameters and Large-Scale Systems. North-Holland, Amsterdam.

    Google Scholar 

  • Schloder, J. and Bock, H. (1983): Identification of rate constants in bistable chemical reactions. In: Deuflhard, P. and Hairer, E. [eds.] (1983) (to appear).

    Google Scholar 

  • Cheney, E. (1966): Introduction to Approximation Theory. McGraw-Hill, New York.

    MATH  Google Scholar 

  • Meinardus, G. (1964): Approximation von Funktionen und ihre numerische Behandlung. Springer-Verlag, Berlin. (English edition: Approximation of Functions: Theory and Numerical Methods. Springer-Verlag, New York, 1967.)

    Google Scholar 

  • Collatz, L. and Krabs, W. (1973): Approximationstheorie. Teubner, Stuttgart.

    MATH  Google Scholar 

  • Cheney, E. (1966): Introduction to Approximation Theory. McGraw-Hill, New York.

    MATH  Google Scholar 

  • Baker, G. and Gammel, J. (1970): The Pade Approximation in Theoretical Physics. Academic, New York.

    Google Scholar 

  • Saff, R. and Varga, R. [eds.] (1977): Pade and Rational Approximation. Academic, New York.

    MATH  Google Scholar 

  • Baker, C. and Morris, P. (1981): Pade Approximants, Vols. 1, 2. Addison-Wesley, New York.

    Google Scholar 

  • Luke, Y. (1975): Mathematical Functions and Their Approximations. Academic, New York.

    MATH  Google Scholar 

  • Collatz, L. (1964): Funktionalanalysis und numerische Mathematik. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Collatz, L. and Wetterling, W. (1966): Optimierungsaufgaben. Springer-Verlag, Berlin (Second enlarged edition, 1971; English edition: Springer, New York, 1975 ).

    MATH  Google Scholar 

  • Collatz, L. and Krabs, W. (1973): Approximationstheorie. Teubner, Stuttgart.

    MATH  Google Scholar 

  • Krabs, W. (1975): Optimierung und Approximation. Teubner, Stuttgart. (English edition: Optimization and Approximation. Wiley, New York, 1979.)

    Google Scholar 

  • Collatz, L., Gunther, H., and Sprekels, J. (1976): Vergleich zwischen Dis-kretisierungsverfahren und parametrischen Methoden an einfachen Testbeispielen. ZAMM 56 (1–11).

    MathSciNet  MATH  Google Scholar 

  • Courant, R. (1943): Variational methods for the solution of problems of equilibrium and vibrations. Bull. Amer. Math. Soc. 49 (1–23).

    MathSciNet  MATH  Google Scholar 

  • Schoenberg, I. (1946): Contributions to the problem of approximation of equidistant data by analytic functions. Quart. Appl. Math. 4 (45–99; 112–141).

    Google Scholar 

  • Laurent, P. (1972): Approximation et optimisation. Hermann, Paris.

    MATH  Google Scholar 

  • Schultz, M. (1973): Spline Analysis. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Boor, C. de (1978): A Practical Guide to Splines. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Ciarlet, P. (1977): Numerical Analysis of the Finite Element Method for Elliptic Boundary Value Problems. North-Holland, Amsterdam.

    Google Scholar 

  • Levin, M. and Girsovic, J. (1979): Optimal Quadrature Formulas. Teubner, Leipzig.

    MATH  Google Scholar 

  • Engels, H. (1980): Numerical Quadrature and Cubature. Academic, New York.

    MATH  Google Scholar 

  • Berezin, I. and Zidkov, N. (1966): Numerical Methods. Nauka, Moscow (Russian). (German edition: VEB Dt. Verl. d. Wiss., Vols. 1, 2. Berlin, 1970–1971.)

    Google Scholar 

  • Krylov, V. (1967): Approximate Computation of Integrals. Nauka, Moscow (Russian).

    Google Scholar 

  • Karlin, S. (1971): Best quadrature formulas and splines. J. Approx. Theory 4 (59–90).

    MathSciNet  MATH  Google Scholar 

  • Kiesewetter, H. (1973): Vorlesungen uber lineare Approximation. VEB Dt. Verl. d. Wiss., Berlin.

    Google Scholar 

  • Sobolev, S. (1974): Introduction to the Theory of Cubature Formulas. Nauka, Moscow (Russian).

    Google Scholar 

  • Levin, M. and Girsovic, J. (1979): Optimal Quadrature Formulas. Teubner, Leipzig.

    MATH  Google Scholar 

  • Engels, H. (1980): Numerical Quadrature and Cubature. Academic, New York.

    MATH  Google Scholar 

  • Stroud, A. (1974): Numerical Quadrature and Solution of Ordinary Differential Equations. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Piehler, J. and Zschiesche, H. (1976): Simulationsmethoden. Teubner, Leipzig.

    MATH  Google Scholar 

  • Sobol, I. (1971): Die Monte-Carlo Methode. VEB Dt. Verl. d. Wiss., Berlin.

    Google Scholar 

  • Yakowitz, S. (1977): Computational Probability and Simulation. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Bellman, R. (1953): An introduction to the theory of dynamic programming. The Rand Corporation, Santa Monica, CA.

    Google Scholar 

  • Bellman, R. (1954): The theory of dynamic programming. Bull. Amer. Math. Soc. 60 (503–516).

    MathSciNet  MATH  Google Scholar 

  • Bellman, R. (1957): Dynamic Programming. Princeton University Press, Princeton, N.J.

    MATH  Google Scholar 

  • Bellman, R. and Lee, E. (1978): Functional equations in dynamic programming. Aequationes Math. 17 (1–18).

    MathSciNet  MATH  Google Scholar 

  • Bellman, R. (1961): Adaptive Control Processes. Princeton University Press, Princeton, N J.

    Google Scholar 

  • Hadley, G. (1963): Nonlinear and Dynamic Programming. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Bellman, R. (1967): Introduction to the Mathematical Theory of Control Processes, Vols. 1, 2. Academic, New York, 1967–1971.

    Google Scholar 

  • White, D. (1969): Dynamic Programming. Holden-Day, San Francisco.

    MATH  Google Scholar 

  • Angel, E. and Bellman, R. (1972): Dynamic Programming and Partial Differential Equations. Academic, New York.

    MATH  Google Scholar 

  • Cheung, T. (1978): Recent developments in the numerical solution of partial differential equations by linear programming. SIAM Rev. 20 (139–167).

    MathSciNet  MATH  Google Scholar 

  • Fleming, W. and Rishel, R. (1975): Deterministic and Stochastic Optimal Control. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Aubin, J. (1979): Mathematical Methods of Game and Economic Theory. North-Holland, Amsterdam.

    MATH  Google Scholar 

  • Casti, J. (1980): The quadratic control problem. SIAM Rev. 22 (442–458).

    MathSciNet  Google Scholar 

  • Pontrjagin, L., Boltjanskii, V., Gamkrelidze, R., and Miscenko, E. (1961): Mathematical Theory of Optimal Processes. Fizmatgiz, Moscow (Russian). (German edition: VEB Dt. Verl. d. Wiss., Berlin, 1964. English edition: Wiley, New York, 1962.)

    Google Scholar 

  • Fleming, W. and Rishel, R. (1975): Deterministic and Stochastic Optimal Control. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Focke, J. and Klotzler, R. (1978): Zur Grundkonzeption der dynamischen Optimierung. Wiss. Z. Karl-Marx-Univ. Leipzig, Math.-nat. Reihe 27 (447–462).

    MathSciNet  MATH  Google Scholar 

  • Lions, P. (1982): Generalized solutions of Hamilton-Jacobi equations. Pitman, London.

    MATH  Google Scholar 

  • Boltjanskii, V., Gamkrelidze, R, and Pontijagin, L. (1956): On the theory of optimal processes. Doklady Akad. Nauk SSSR 110 (7–10) (Russian).

    Google Scholar 

  • Gamkrelidze, R. (1958): Theory of time-optimal processes for linear systems. Izv. Akad. Nauk SSSR, ser. mat. 22 (449–474) (Russian).

    MathSciNet  MATH  Google Scholar 

  • Boltjanskii, V. (1958): The maximum principle and the theory of optimal processes. Doklady Akad. Nauk SSSR 119 (1070–1073) (Russian).

    MathSciNet  Google Scholar 

  • Pontrjagin, L. (1959): Optimal control processes. Uspehi Mat. Nauk 14, 1 (3–20) (Russian).

    MathSciNet  Google Scholar 

  • Hestenes, M. (1950): A general problem in the calculus of variations with applications to paths of least time. The Rand Corporation, Santa Monica, CA.

    Google Scholar 

  • McShane, E. (1978): The calculus of variations from the beginning through optimal control theory. In: Optimal Control and Differential Equations. A. Schwarzkopf [ed.], Academic, New York, 3–49.

    Google Scholar 

  • Macki, J. and Strauss (1982): Introduction to Optimal Control Theory. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • BronStein, I. and Semendjaev, K. (1979): Taschenbuch der Mathematik, Vols. 1, 2. Teubner, Leipzig.

    Google Scholar 

  • Frank, W. (1969): Mathematische Grundlagen der Optimierung. Oldenbourg, Mtinchen.

    MATH  Google Scholar 

  • Fleming, W. and Rishel, R. (1975): Deterministic and Stochastic Optimal Control. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Petrov, J. (1977): Variational Methods of the Theory of Optimal Control. Energija, Leningrad (Russian). (English edition: Academic, New York, 1968.)

    Google Scholar 

  • Leitmann, G. (1981): The Calculus of Variations and Optimal Control. Plenum, New York.

    MATH  Google Scholar 

  • Pontrjagin, L., Boltjanskii, V., Gamkrelidze, R., and Miscenko, E. (1961): Mathematical Theory of Optimal Processes. Fizmatgiz, Moscow (Russian). (German edition: VEB Dt. Verl. d. Wiss., Berlin, 1964. English edition: Wiley, New York, 1962.)

    Google Scholar 

  • Lee, E. and Markus, L. (1967): Foundations of Optimal Control Theory. Wiley, New York.

    MATH  Google Scholar 

  • Boltjanskii, V. (1971): Mathematische Methoden der optimalen Steuerung. Geest & Portig, Leipzig. (English edition: Mathematical Methods of Optimal Control. Holt, Rinehart and Winston, New York, 1971.)

    Google Scholar 

  • Russell, D. (1979): Mathematics of Finite-Dimensional Control Systems. Dekker, New York.

    MATH  Google Scholar 

  • Cesari, L. (1983): Optimization —Theory and Applications. Problems with Ordinary Differential Equations. Springer-Verlag, New York.

    MATH  Google Scholar 

  • McShane, E. (1978): The calculus of variations from the beginning through optimal control theory. In: Optimal Control and Differential Equations. A. Schwarzkopf [ed.], Academic, New York, 3–49.

    Google Scholar 

  • Boltjanskii, V. (1976): Optimale Steuerung diskreter Systeme. Geest & Portig, Leipzig. (English edition: Optimal Control of Discrete Systems. Halsted, New York, 1978.)

    Google Scholar 

  • Pontrjagin, L., Boltjanskii, V., Gamkrelidze, R., and Miscenko, E. (1961): Mathematical Theory of Optimal Processes. Fizmatgiz, Moscow (Russian). (German edition: VEB Dt. Verl. d. Wiss., Berlin, 1964. English edition: Wiley, New York, 1962.)

    Google Scholar 

  • Lee, E. and Markus, L. (1967): Foundations of Optimal Control Theory. Wiley, New York.

    MATH  Google Scholar 

  • Butkovskii, A. (1965): The Theory of the Optimal Control of Systems with Distributed Parameters. Nauka, Moscow (Russian). (English edition: American Elsevier, New York, 1969.)

    Google Scholar 

  • Butkovskii, A. (1975): Methods of Control of Systems with Distributed Parameters. Nauka, Moscow (Russian).

    Google Scholar 

  • Lions, J. (1971): Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Lurje, K. (1975): Optimal Control in Problems of Mathematical Physics. Nauka, Moscow (Russian).

    Google Scholar 

  • Ahmed, N. and Teo, K. (1981): Optimal Control of Distributed Parameter Systems. North-Holland, New York.

    MATH  Google Scholar 

  • Kolmogorov, A. (1941): Interpolation and extrapolation of stationary random sequences. Bull. Acad. Sci. USSR, Ser. math. 5 (3–14) (Russian).

    MathSciNet  Google Scholar 

  • Wiener, N. (1949): Extrapolation, Interpolation, and Smoothing of Stationary Time Series. Technology Press, Cambridge, MA.

    Google Scholar 

  • Kalman, R. and Bucy, R. (1961): New results in linear filtering and prediction theory. Trans. ASME, Ser. D 83 (95–107).

    MathSciNet  Google Scholar 

  • Astrom, K. (1970): Introduction to Stochastic Control Theory. Academic, New York.

    Google Scholar 

  • Fleming, W. and Rishel, R. (1975): Deterministic and Stochastic Optimal Control. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Balakrishnan, A. (1975): Applied Functionals Analysis. Springer-Verlag, New York.

    Google Scholar 

  • Bellman, R. (1957): Dynamic Programming. Princeton University Press, Princeton, N.J.

    MATH  Google Scholar 

  • White, D. (1969): Dynamic Programming. Holden-Day, San Francisco.

    MATH  Google Scholar 

  • Bryson, A. and Ho, Y. (1969): Applied Optimal Control. Blaisdell, New York.

    Google Scholar 

  • Meditch, J. (1969): Stochastic Optimal Linear Estimation and Control. McGraw-Hill, New York.

    MATH  Google Scholar 

  • Girlich, H. (1973): Stochastische Entscheidungsprozesse. Teubner, Leipzig.

    MATH  Google Scholar 

  • Gihman, I. and Skorohod, A. (1977): The Control of Random Processes. Naukova Dumka, Kiev (Russian).

    Google Scholar 

  • Kroschel, K. (1973): Statistische Nachrichtentheorie, Vols. 1, 2. Springer-Verlag, New York, 1973–1974.

    Google Scholar 

  • Wiener, N. (1949): Extrapolation, Interpolation, and Smoothing of Stationary Time Series. Technology Press, Cambridge, MA.

    Google Scholar 

  • Bucy, R. and Joseph, P. (1968): Filtering for Stochastic Processes with Applications to Guidance. Interscience, New York.

    MATH  Google Scholar 

  • Kalman, R., Falb, P., and Arbib, M. (1969): Topics in Mathematical System Theory. McGraw-Hill, New York.

    MATH  Google Scholar 

  • Astrom, K. (1970): Introduction to Stochastic Control Theory. Academic, New York.

    Google Scholar 

  • Bensoussan, A. (1971): Filtrage optimal des systemes lineaires. Dunod, Paris.

    MATH  Google Scholar 

  • Arnold, L. (1973): Stochastische Differentialgleichungen. Oldenbourg, Munchen. (English edition: Stochastic Differential Equations: Theory and Applications. Wiley, New York, 1974.)

    Google Scholar 

  • Fleming, W. and Rishel, R. (1975): Deterministic and Stochastic Optimal Control. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Liptser, R. and Širjajev, A. (1977): Statistics of Random Processes, Vols. 1, 2. Springer-Verlag, Berlin, 1977–1978.

    Google Scholar 

  • Kallianpur, G. (1980): Stochastic Filtering Theory. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Solodovnikov, V. (1965): Statistical Dynamics of Linear Automatic Control Systems. Dover, New York.

    Google Scholar 

  • Schlitt, H. (1968): Stochastische Vorgange in linearen und nichtlinearen Regelkreisen. Vieweg, Braunschweig; Verl. Technik, Berlin.

    Google Scholar 

  • Kroschel, K. (1973): Statistische Nachrichtentheorie, Vols. 1, 2. Springer-Verlag, New York, 1973–1974.

    Google Scholar 

  • Jenkins, G. and Watts, D. (1968): Spectral Analysis and Its Applications. Holden-Day, San Francisco.

    MATH  Google Scholar 

  • Box, G. and Jenkins, G. (1970): Time-Series Analysis: Forecasting and Control. Holden-Day, San Francisco.

    MATH  Google Scholar 

  • Hannan, E. (1970): Multiple Time Series. Wiley, New York.

    MATH  Google Scholar 

  • Konig, H. and Wolters, J. (1972): Einfuhrung in die Spektralanalyse okonomischer Zeitreihen. Meisenheim am Glan: A. Hain.

    Google Scholar 

  • Brillinger, D. (1975): Time Series. Holt, Rinehart and Winston, New York.

    Google Scholar 

  • Priestley, M. (1981): Spectral Analysis and Time Series, Vols. 1, 2. Academic, New York.

    Google Scholar 

  • Moerbeke, P. van (1974): Optimal stopping and free boundary problems. Rocky Mountain J. Math. 4 (539–578).

    MathSciNet  MATH  Google Scholar 

  • Moerbeke, P. van (1976): On optimal stopping time and free boundary problems. Arch. Rat. Mech. Anal. 60 (101–148).

    MATH  Google Scholar 

  • Friedman, A. (1975): Stochastic Differential Equations and Applications, Vols. 1, 2. Academic, New York, 1975–1976.

    Google Scholar 

  • Friedman, A. (1979): Optimal stopping problems in stochastic control. SIAM Rev. 21 (71–80).

    MathSciNet  MATH  Google Scholar 

  • Bensoussan, A. and Lions, J. [eds.] (1978): Applications des inequations variation-nelles en controle stochastique. Dunod, Paris; Bordas, Paris. (English edition: North-Holland, Amsterdam, 1981.)

    Google Scholar 

  • Solodovnikov, V. (1965): Statistical Dynamics of Linear Automatic Control Systems. Dover, New York.

    Google Scholar 

  • Bucy, R. and Joseph, P. (1968): Filtering for Stochastic Processes with Applications to Guidance. Interscience, New York.

    MATH  Google Scholar 

  • Bryson, A. and Ho, Y. (1969): Applied Optimal Control. Blaisdell, New York.

    Google Scholar 

  • Astrom, K. (1970): Introduction to Stochastic Control Theory. Academic, New York.

    Google Scholar 

  • Ross, S. (1970): Applied Probability Models with Optimization Applications. Holden-Day, San Francisco.

    MATH  Google Scholar 

  • Girlich, H. (1973): Stochastische Entscheidungsprozesse. Teubner, Leipzig.

    MATH  Google Scholar 

  • Moerbeke, P. van (1974): Optimal stopping and free boundary problems. Rocky Mountain J. Math. 4 (539–578).

    MathSciNet  Google Scholar 

  • Giorgi, E. De, Magenes, E., and Mosco, U. [eds.] (1979): Proc. of the Internat. Meeting on Recent Methods in Nonlinear Analysis. Pitagora, Bologna.

    Google Scholar 

  • Gnedenko, B. (1962): Lehrbuch der Wahrscheinlichkeitsrechnung. Akademie-Verlag, Berlin.

    MATH  Google Scholar 

  • Feller, W. (1968): Modern Probability Theory, Vols. 1, 2. Wiley, New York.

    Google Scholar 

  • Arnold, L. (1973): Stochastische Differentialgleichungen. Oldenbourg, Munchen. (English edition: Stochastic Differential Equations: Theory and Applications. Wiley, New York, 1974.)

    Google Scholar 

  • Rozanov, J. (1975): Stochastische Prozesse. Akadamie-Verlag, Berlin.

    MATH  Google Scholar 

  • Prohorov, J. and Rozanov, J. (1969): Probability Theory. Springer-Verlag, Berlin.

    Google Scholar 

  • Doob, J. (1953): Stochastic Processes. Wiley, New York, 1953, 1967.

    Google Scholar 

  • Meyer, P. and Dellacherie, C. (1966): Probability et potentiel. Hermann, Paris. (English edition: Probabilities and Potential. Elsevier, New York, 1978.)

    Google Scholar 

  • Karlin, S. (1968): A First Course in Stochastic Processes. Academic, New York.

    MATH  Google Scholar 

  • Karlin, S. and Taylor, M. (1980): A Second Course in Stochastic Processes. Academic, New York.

    Google Scholar 

  • Gihman, I. and Skorohod, A. (1969): Introduction to the Theory of Random Processes. Saunders, Philadelphia.

    Google Scholar 

  • Gihman, I. and Skorohod, A. (1971): Theory of Stochastic Processes, Vols. 1–3. Nauka, Moscow, 1971–1975. (Russian). (English edition: Springer-Verlag, Berlin, 1975.)

    Google Scholar 

  • Loeve, M. (1978): Probability Theory. Vols. 1, 2. Springer-Verlag, Berlin.

    Google Scholar 

  • Wentzell, A. (1979): Theorie zufalliger Prozesse. Akademie-Verlag, Berlin.

    Google Scholar 

  • Arnold, L. (1973): Stochastische Differentialgleichungen. Oldenbourg, Munchen. (English edition: Stochastic Differential Equations: Theory and Applications. Wiley, New York, 1974.)

    Google Scholar 

  • Gelfand, I. and Vilenkin, N. (1964): Generalized Functions, Vol. 4. Academic, New York.

    Google Scholar 

  • Balakrishnan, A. (1975): Applied Functionals Analysis. Springer-Verlag, New York.

    Google Scholar 

  • Simon, B. (1974): The P(p) 2 Euclidean Quantum Field Theory. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Arnold, L. (1973): Stochastische Differentialgleichungen. Oldenbourg, Munchen. (English edition: Stochastic Differential Equations: Theory and Applications. Wiley, New York, 1974.)

    Google Scholar 

  • Rozanov, J. (1975): Stochastische Prozesse. Akadamie-Verlag, Berlin.

    MATH  Google Scholar 

  • Gihman, I. and Skorohod, A. (1972): Stochastic Differential Equations. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Friedman, A. (1975): Stochastic Differential Equations and Applications, Vols. 1, 2. Academic, New York, 1975–1976.

    Google Scholar 

  • Wentzell, A. (1979): Theorie zufalliger Prozesse. Akademie-Verlag, Berlin.

    Google Scholar 

  • Ladde, G. and Lakhshmikantham (1980): Random Differential Inequalities. Academic, New York.

    MATH  Google Scholar 

  • Gnedenko, B. and Konig, D. (1983): Handbuch der Bedienungstheorie. Akademie-Verlag, Berlin.

    MATH  Google Scholar 

  • Ljusternik, L. (1930): Topologische Grundlagen der allgemeinen Eigenwerttheorie. Monatsh. Math. Phys. 37 (125–130).

    MathSciNet  Google Scholar 

  • Krasnoselskii, M. (1956): Topological Methods in the Theory of Nonlinear Integral Equations. Gostehizdat, Moscow (Russian). (English edition: Pergamon, Oxford, New York, 1964.)

    Google Scholar 

  • Vainberg, M. (1956): The Variational Method in the Investigation of Nonlinear Operators. Gostehizdat, Moscow (Russian). (English edition: Holden-Day, San Francisco, 1964.)

    Google Scholar 

  • Schwartz, J. (1969): Nonlinear Functional Analysis. Gordon and Breach, New York.

    MATH  Google Scholar 

  • Rabinowitz, P. (1974): Variational methods for nonlinear eigenvalue problems. In: Eigenvalues of Nonlinear Problems. G. Prodi [ed.]. Cremonese, Roma, 141–195.

    Google Scholar 

  • Morse, M. (1925): Relations between the critical points of a real function of n independent variables. Trans. Amer. Math. Soc. 27 (345–396).

    MathSciNet  MATH  Google Scholar 

  • Morse, M. (1934): The Calculus of Variations in the Large. Colloquium Publ., Vol. 18. American Mathematical Society, Providence, RI.

    Google Scholar 

  • Seifert, H. and Threlfall, W. (1938): Variationsrechnung im Grossen. Teubner, Leipzig.

    Google Scholar 

  • Milnor, J. (1963): Morse Theory. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Kahn, D. (1980): Introduction to Global Analysis. Academic, New York.

    MATH  Google Scholar 

  • Bott, R. (1982): Lectures on Morse theory, old and new. Bull. Amer. Math. Soc. (N.S.) 7 (331–358).

    MathSciNet  MATH  Google Scholar 

  • Morse, M. (1934): The Calculus of Variations in the Large. Colloquium Publ., Vol. 18. American Mathematical Society, Providence, RI.

    Google Scholar 

  • Morse, M. (1972): Variational Analysis: Critical Extremals and Sturmian Extensions. Wiley, New York.

    Google Scholar 

  • Morse, M. and Cairns, S. (1969): Critical Point Theory in Global Analysis. Academic, New York.

    MATH  Google Scholar 

  • Smale, S. (1977): Global variational analysis. Bull. Amer. Math. Soc. 83 (683–693).

    MathSciNet  Google Scholar 

  • Kahn, D. (1980): Introduction to Global Analysis. Academic, New York.

    MATH  Google Scholar 

  • Bott, R. (1982): Lectures on Morse theory, old and new. Bull. Amer. Math. Soc. (N.S.) 7 (331–358).

    MathSciNet  MATH  Google Scholar 

  • Berger, M. (1977): Nonlinearity and Functional Analysis. Academic, New York.

    MATH  Google Scholar 

  • Palais, R. (1963): Morse theory on Hilbert manifolds. Topology 2 (299–340).

    MathSciNet  MATH  Google Scholar 

  • Palais, R. and Smale, S. (1964): A generalized Morse theory. Bull. Amer. Math. Soc. 70 (165–171).

    MathSciNet  MATH  Google Scholar 

  • Schwartz, J. (1969): Nonlinear Functional Analysis. Gordon and Breach, New York.

    MATH  Google Scholar 

  • Rothe, E. (1973): Morse theory. Rocky Mountain J. Math. 3 (251–274).

    MathSciNet  MATH  Google Scholar 

  • Skrypnik, I. (1973): Nonlinear Elliptic Equations of Higher Order. Naukova Dumka, Kiev (Russian).

    Google Scholar 

  • Tromba, A. (1977): On the Number of Simply Connected Minimal Surfaces Spanning a Curve. Memoirs of the American Mathematical Society, Vol. 194. American Mathematical Society, Providence, RI.

    Google Scholar 

  • Tromba, A. (1977a): A general approach to Morse theory. J. Diff. Geometry 12 (47–85).

    MathSciNet  MATH  Google Scholar 

  • Thermal Physics. Wiley, New York, 1969. ) Klee, V. (1969): Separation and support properties of convex sets: a survey. In: Control Theory and Calculus of Variations. Balakrishnan, A. [ed.], Academic, New York, 1969, 235–304. Klingenberg, W. (1978): Lectures on Closed Geodesies. Springer-Verlag, Berlin.

    Google Scholar 

  • Marsden, J. (1981): Lectures on Geometric Methods in Mathematical Physics. SIAM, Philadelphia.

    Google Scholar 

  • Tromba, A. (1977): On the Number of Simply Connected Minimal Surfaces Spanning a Curve. Memoirs of the American Mathematical Society, Vol. 194. American Mathematical Society, Providence, RI.

    Google Scholar 

  • Tromba, A. (1977a): A general approach to Morse theory. J. Diff. Geometry 12 (47–85).

    MathSciNet  MATH  Google Scholar 

  • Tromba, A. (1977b): The Morse-Sard-Brown theorem and the problem of Plateau. Amer. J. Math. 99 (1251–1256).

    MathSciNet  MATH  Google Scholar 

  • Tromba, A. (1980): On the structure of the set of curves bounding minimal surfaces of prescribed degeneracy. J. Reine Angew. Math. 316 (31–43).

    MathSciNet  MATH  Google Scholar 

  • Morse, M. (1934): The Calculus of Variations in the Large. Colloquium Publ., Vol. 18. American Mathematical Society, Providence, RI.

    Google Scholar 

  • Seifert, H. and Threlfall, W. (1938): Variationsrechnung im Grossen. Teubner, Leipzig.

    Google Scholar 

  • Milnor, J. (1963): Morse Theory. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Schwartz, J. (1969): Nonlinear Functional Analysis. Gordon and Breach, New York.

    MATH  Google Scholar 

  • Klingenberg, W. (1978): Lectures on Closed Geodesies. Springer-Verlag, Berlin.

    Google Scholar 

  • Skrypnik, I. (1973): Nonlinear Elliptic Equations of Higher Order. Naukova Dumka, Kiev (Russian).

    Google Scholar 

  • Berger, M. (1977): Nonlinearity and Functional Analysis. Academic, New York.

    MATH  Google Scholar 

  • Guillemin, V. and Sternberg, S. (1977): Geometric Asymptotics. Mathematical Surveys, Vol. 14. American Mathematical Society, Providence, RI.

    Google Scholar 

  • Milnor, J. (1963): Morse Theory. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Hirsch, M. (1976): Differential Topology. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Morse, M. (1934): The Calculus of Variations in the Large. Colloquium Publ., Vol. 18. American Mathematical Society, Providence, RI.

    Google Scholar 

  • Seifert, H. and Threlfall, W. (1938): Variationsrechnung im Grossen. Teubner, Leipzig.

    Google Scholar 

  • Berger, M. (1977): Nonlinearity and Functional Analysis. Academic, New York.

    MATH  Google Scholar 

  • Conley, C. (1978): Isolated Invariant Sets and the Morse Index. Regional Conference Series in Math., Vol. 38. American Mathematical Society

    Google Scholar 

  • Amann, H. and Zehnder, E. (1980): Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations. Ann. Scuola Norm. Sup. Pisa CI. Sci. (4) 7 (539–603).

    MathSciNet  MATH  Google Scholar 

  • Smoller, J. (1983): Shock Waves and Reaction Diffusion Equations. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Fucik, S., Necas, J., Soucek, J., and Soucek, V. (1973): Spectral Analysis of Nonlinear Operators. Lecture Notes in Mathematics, Vol. 346. Springer-Verlag, Berlin.

    Google Scholar 

  • Berger, M. (1977): Nonlinearity and Functional Analysis. Academic, New York.

    MATH  Google Scholar 

  • Tromba, A. (1977b): The Morse-Sard-Brown theorem and the problem of Plateau. Amer. J. Math. 99 (1251–1256).

    MathSciNet  MATH  Google Scholar 

  • Thom, R. (1972): Stabilite structurelle et morphogenese. Inter-Editions, Paris. (English edition: Structural Stability and Morphogenesis. An Outline of a General Theory of Models, 2nd printing. Benjamin, Reading, MA, 1976.)

    Google Scholar 

  • Lu, Y. (1976): Singularity Theory and an Introduction to Catastrophe Theory. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Poston, T. and Stewart, I. (1978): Catastrophe Theory and Its Applications. Pitman, London.

    MATH  Google Scholar 

  • Gilmore, R. (1981): Catastrophe Theory for Scientists. Wiley, New York.

    MATH  Google Scholar 

  • Golubitsky, M. (1978): An introduction to catastrophe theory and its applications. SIAM Rev. 20 (352–387).

    MathSciNet  MATH  Google Scholar 

  • Triebel, H. (1981): Analysis und mathematische Physik. Teubner, Leipzig.

    Google Scholar 

  • Guillemin, V. and Pollack, A. (1974): Differential Topology. Prentice-Hall, En-glewood Cliffs, NJ.

    Google Scholar 

  • Golubitsky, M. and Guillemin, V. (1973): Stable Mappings and Their Singularities. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Arnold, V. (1981): Singularity Theory. Selected Papers. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Brocker, T. and Lander, L. (1975): Differentiable Germs and Catastrophes. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Arnold, V. (1971): Ordinary Differential Equations. Nauka, Moscow, 1971–1978. Vols. 1,2. (Russian). (English edition: MIT Press, Cambridge, MA, 1978.)

    Google Scholar 

  • Arnold, V. (1975): Critical points of functions. Uspehi Mat. Nauk 30, 5 (3–65) (Russian).

    Google Scholar 

  • Arnold, V. (1983): Singularities of ray systems. Uspehi Mat. Nauk 38, 2 (77–147) (Russian).

    Google Scholar 

  • Duistermaat, J. (1974): Oscillatory integrals, Lagrange immersions and unfolding of singularities. Comm. Pure. Appl. Math. 27 (207–281).

    MathSciNet  MATH  Google Scholar 

  • Arnold, V. (1975): Critical points of functions. Uspehi Mat. Nauk 30, 5 (3–65) (Russian).

    Google Scholar 

  • Arnold, V. (1983a): Singularities in variational calculus. Itogi nauki sovremennye problemy matematiki, Vol. 22. Moscow (Russian).

    Google Scholar 

  • Abraham, R. and Robbin, J. (1967): Transversal Mappings and Flows. Benjamin, New York.

    MATH  Google Scholar 

  • Golubitsky, M. and Schaeffer, D. (1979): A theory for imperfect bifurcation via singularity theory. Comm. Pure Appl. Math. 32 (21–98).

    MathSciNet  MATH  Google Scholar 

  • Chow, S. and Hale, J. (1982): Methods of Bifurcation Theory. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Poston, T. and Stewart, I. (1978): Catastrophe Theory and Its Applications. Pitman, London.

    MATH  Google Scholar 

  • Gilmore, R. (1981): Catastrophe Theory for Scientists. Wiley, New York.

    MATH  Google Scholar 

  • Thom, R. (1972): Stabilite structurelle et morphogenese. Inter-Editions, Paris. (English edition: Structural Stability and Morphogenesis. An Outline of a General Theory of Models, 2nd printing. Benjamin, Reading, MA, 1976.)

    Google Scholar 

  • Zeeman, E. (1974): Levels of structure in catastrophe theory illustrated by applications in the social and biological sciences. In: Proc. Internat. Congress of Mathematicians, Vancouver, 1974, Vol. 2, 533–546.

    Google Scholar 

  • Hilton, P. [ed.] (1974): Structural Stability, the Theory of Catastrophes, and Applications in the Sciences. Lecture Notes in Math., Vol. 525. Springer-Verlag, Berlin.

    Google Scholar 

  • Golubitsky, M. (1978): An introduction to catastrophe theory and its applications. SIAM Rev. 20 (352–387).

    MathSciNet  MATH  Google Scholar 

  • Guttinger, W. and Eikemeier, H. [eds.] (1979): Structural Stability in Physics. Springer-Verlag, New York.

    Google Scholar 

  • Ursprung, H. (1982): Die elementare Katostrophentheorie: Eine Darstellung aus der Sicht der Okonomie. Lecture Notes in Economics and Mathematical Systems, Vol. 195. Springer-Verlag, Berlin.

    Google Scholar 

  • Thompson, J. (1982): Instabilities and Catastrophes in Science and Engineering. Wiley, New York.

    MATH  Google Scholar 

  • Courant, R. (1943): Variational methods for the solution of problems of equilibrium and vibrations. Bull. Amer. Math. Soc. 49 (1–23).

    MathSciNet  MATH  Google Scholar 

  • Collatz, L. (1964): Funktionalanalysis und numerische Mathematik. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Cea, J. (1971): Optimisation: theorie et algorithmes. Dunod, Paris.

    MATH  Google Scholar 

  • Polak, E. (1971): Computational Methods in Optimization. Academic, New York.

    Google Scholar 

  • Hlavacek, I. (1979): Some variational methods for nonlinear mechanics. In: Fucik, S. and Kufner, A. [eds.] (1979); 128–148.

    Google Scholar 

  • Dixon, L., Spedicato, E., and Szego, G. (1980): Nonlinear Optimization. Theory and Algorithms. Birkhauser, Boston.

    MATH  Google Scholar 

  • Luenberger, D. (1969): Optimization by Vector Space Methods. Wiley, New York.

    MATH  Google Scholar 

  • Varga, R. (1971): Functional Analysis and Approximation Theory in Numerical Analysis. SI AM, Philadelphia.

    MATH  Google Scholar 

  • Collatz, L. (1964): Funktionalanalysis und numerische Mathematik. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Kantorovic, L. and Akilov, G. (1964): Funktionalanalysis in normierten Raumen. Akadamie-Verlag, Berlin. (English edition: Pergamon, Oxford, 1964.)

    Google Scholar 

  • Sauer, R. and Szabo, I. (1967): Mathematische Hilfsmittel des Ingenieurs, Vols. 1–4. Springer-Verlag, Berlin, 1967–1970.

    Google Scholar 

  • Krasnoselskii, M. (1973): Naherungsverfahren zur Losung von Operatorgleichungen. Akademie-Verlag, Berlin.

    Google Scholar 

  • Gajewski, H., Groger, K., and Zacharias, K. (1974): Nichlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin.

    MATH  Google Scholar 

  • Langenbach, A. (1976): Monotone Potentialoperatoren in Theorie und Anwendung. VEB Dt. Verl. d. Wiss., Berlin.

    Google Scholar 

  • Auslender, A. (1976): Optimisation: methodes numeriques. Masson, Paris.

    MATH  Google Scholar 

  • Glowinski, R., Lions, J., and Tremolieres, R. (1976): Analyse numerique des inequations variationnelles, Vols. 1, 2. Gauthier-Villars, Paris.

    Google Scholar 

  • Berger, M. (1977): Nonlinearity and Functional Analysis. Academic, New York.

    MATH  Google Scholar 

  • Kluge, R. (1979): Nichtlineare Variationsungleichungen und Extremalaufgaben. VEB Dt. Verl. d. Wiss., Berlin.

    Google Scholar 

  • Glowinski, R. (1980): Lectures on Numerical Methods for Nonlinear Variational Problems. Tata Institute, Bombay.

    Google Scholar 

  • Hlavacek, I. and Necas, J. (1981): Mathematical Theory of Elastic and Elasto-plastic Bodies. Elsevier, Amsterdam.

    MATH  Google Scholar 

  • Cea, J. (1971): Optimisation: theorie et algorithmes. Dunod, Paris.

    MATH  Google Scholar 

  • Polak, E. (1971): Computational Methods in Optimization. Academic, New York.

    Google Scholar 

  • Grossmann, C. and Kleinmichel, H. (1976): Verfahren der nichtlinearen Optimierung. Teubner, Leipzig.

    MATH  Google Scholar 

  • Auslender, A. (1976): Optimisation: methodes numeriques. Masson, Paris.

    MATH  Google Scholar 

  • Psenicnyi, B. and Danilin, J. (1979): Numerical Methods in Extremal Problems. Mir, Moscow (Russian).

    Google Scholar 

  • Dixon, L., Spedicato, E., and Szego, G. (1980): Nonlinear Optimization. Theory and Algorithms. Birkhauser, Boston.

    MATH  Google Scholar 

  • Marcuk, G. (1980): Methodes de calcul numerique. Mir, Moscow (French). (Russian edition: Mir, Moscow, 1977. English edition: Springer, New York, 1982.)

    Google Scholar 

  • Ritz, W. (1909): Uber eine neue Methode zur Losung gewisser Variationsprobleme der mathematischen Physik. J. Reine Angew. Math. 135 (1–61).

    Google Scholar 

  • Michlin, S. (1969): Numerische Realisierung von Variations methoden. Akademie-Verlag, Berlin.

    Google Scholar 

  • Ciarlet, P. (1977): Numerical Analysis of the Finite Element Method for Elliptic Boundary Value Problems. North-Holland, Amsterdam.

    Google Scholar 

  • Galerkin, B. (1915): Rods and plates. Vestnik Inzernerov 19 (Russian)

    Google Scholar 

  • Krasnoselskii, M., Vainikko, G., Zabreiko, P., Rutickii, Ja., and Stecenko, V. (1973): Naherungsverfahren zur Losung von Operatorgleichungen. Akademie-Verlag, Berlin.

    Google Scholar 

  • Richtmyer, R. and Morton, K. (1967): Difference Methods for Initial Value Problems. Interscience, New York.

    MATH  Google Scholar 

  • Birkhoff, G. (1971): The Numerical Solution of Elliptic Equations. Regional Conference Series in Applied Mathematics, Vol. 11. SIAM, Philadelphia.

    Google Scholar 

  • Temam, R. (1977): Navier-Stokes Equations: Theory and Numerical Analysis. North-Holland, Amsterdam.

    MATH  Google Scholar 

  • Cauchy, A. (1847): Methode generate pour la resolution des systemes d’ equations simultanees. C. R. Acad. Sci. Paris 25 (536–538).

    Google Scholar 

  • Powell, M. (1971): Recent advances in unconstrained optimization. Math. Programming 1 (26–57).

    MathSciNet  MATH  Google Scholar 

  • Ljubic, J. and Maistrovskii, G. (1970): General theory of relaxation processes for convex functionals. Uspehi Mat. Nauk 25, 1 (57–112) (Russian).

    MathSciNet  Google Scholar 

  • Cea, J. (1971): Optimisation: theorie et algorithmes. Dunod, Paris.

    MATH  Google Scholar 

  • Vainberg, M. (1972): Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations. Nauka, Moscow (Russian). (English edition: Wiley, New York, 1973.)

    Google Scholar 

  • Gopfert, A. (1973): Mathematische Optimierung in allgemeinen Vektorraumen. Teubner, Leipzig.

    Google Scholar 

  • Fletcher, R. (1980): Practical Methods of Optimization. Vols. 1, 2. Wiley, Chichester.

    Google Scholar 

  • Remes, E. (1934): Sur un procede convergent d’approximation successive pour determiner les polynomes d’approximation. C. R. Acad. Sci. Paris 198 (2063–2065);

    Google Scholar 

  • Remes, E. (1934): Sur un procede convergent d’approximation successive pour determiner les polynomes d’approximation. C. R. Acad. Sci. Paris 199 (337–340).

    Google Scholar 

  • Meinardus, G. (1964): Approximation von Funktionen und ihre numerische Behandlung. Springer-Verlag, Berlin. (English edition: Approximation of Functions: Theory and Numerical Methods. Springer-Verlag, New York, 1967.)

    Google Scholar 

  • Cheney, E. (1966): Introduction to Approximation Theory. McGraw-Hill, New York.

    MATH  Google Scholar 

  • Laurent, P. (1972): Approximation et optimisation. Hermann, Paris.

    MATH  Google Scholar 

  • Collatz, L. (1964): Funktionalanalysis und numerische Mathematik. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Meinardus, G. (1964): Approximation von Funktionen und ihre numerische Behandlung. Springer-Verlag, Berlin. (English edition: Approximation of Functions: Theory and Numerical Methods. Springer-Verlag, New York, 1967.)

    Google Scholar 

  • Courant, R. (1943): Variational methods for the solution of problems of equilibrium and vibrations. Bull. Amer. Math. Soc. 49 (1–23).

    MathSciNet  MATH  Google Scholar 

  • Cea, J. (1971): Optimisation: theorie et algorithmes. Dunod, Paris.

    MATH  Google Scholar 

  • Grossmann, C. and Kaplan, A. (1979): Strafmethoden und modifizierte Lagrangefunktionen in der nichtlinearen Optimierung. Teubner, Leipzig.

    Google Scholar 

  • Poljak, B. (1974): Methods of minimization with presence of side conditions. Itogi Nauki i Tehniki, Matemat. Analiz 12 (147–197) (Russian).

    MathSciNet  Google Scholar 

  • Glowinski, R., Lions, J., and Tremolieres, R. (1976): Analyse numerique des inequations variationnelles, Vols. 1, 2. Gauthier-Villars, Paris.

    Google Scholar 

  • Psenicnyi, B. and Danilin, J. (1979): Numerical Methods in Extremal Problems. Mir, Moscow (Russian).

    Google Scholar 

  • Fletcher, R. (1980): Practical Methods of Optimization. Vols. 1, 2. Wiley, Chichester.

    Google Scholar 

  • Tihonov, A. (1963): On the solution of ill-posed problems. Doklady Akad. Nauk SSSR 151 (501–504) (Russian).

    MathSciNet  Google Scholar 

  • Cea, J. (1971): Optimisation: theorie et algorithmes. Dunod, Paris.

    MATH  Google Scholar 

  • Morozov, V. (1973): Linear and nonlinear ill-posed problems. Itogi Nauki i Tehniki, Matemat. Analiz 11 (129–178) (Russian).

    Google Scholar 

  • Tihonov, A. and Arsenin, V. (1977): Solution of Ill-Posed Problems. Wiley, New York.

    Google Scholar 

  • Browder, F. (1968): Non-linear eigenvalue problems and Galerkin approximation. Bull. Amer. Math. Soc. 74 (651–656).

    MathSciNet  MATH  Google Scholar 

  • Brezis, H. and Browder, F. (1976): A general ordering principle in nonlinear functional analysis. Advances in Math. 21 (355–364).

    MathSciNet  MATH  Google Scholar 

  • Lions, J. (1969): Quelques methodes de resolution des problemes aux limites non lineaires. Dunod, Paris; Gauthier-Villars, Paris.

    Google Scholar 

  • Gajewski, H., Groger, K., and Zacharias, K. (1974): Nichlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin.

    MATH  Google Scholar 

  • Pascali, D. (1974): Operatori neliniari. Ed. Acad., Bucuresti.

    Google Scholar 

  • Hess, P. (1974): On semi-coercive nonlinear problems. Indiana Univ. Math. J. 23 (646–654).

    Google Scholar 

  • Pascali, D. and Sburlan, S. (1978): Nonlinear Mappings of Monotone Type. Sijthoff & Noordhoff, Alphen a. d. Rijn.

    MATH  Google Scholar 

  • Neumann, J. von and Richtmyer, R. (1950): A method for the numerical calculation of hydrodynamics. J. Appl. Phys. 21 (232–237).

    MathSciNet  MATH  Google Scholar 

  • Lax, P. and Wendroff, B. (1960): Systems of conservation laws. Comm. Pure Appl. Math. 13 (217–238).

    MathSciNet  MATH  Google Scholar 

  • Lax, P. and Wendroff, B. (1964): Difference schemes for hyperbolic equations with high order of accuracy. Comm. Pure Appl. Math. 17 (381–398).

    MathSciNet  MATH  Google Scholar 

  • Richtmyer, R. and Morton, K. (1967): Difference Methods for Initial Value Problems. Interscience, New York.

    MATH  Google Scholar 

  • Oleinik, O. (1957): Discontinuous solutions of nonlinear equations. Uspehi Mat. Nauk 12, 3 (3–73) (Russian).

    MathSciNet  Google Scholar 

  • Lions, J. (1969): Quelques methodes de resolution des problemes aux limites non lineaires. Dunod, Paris; Gauthier-Villars, Paris.

    Google Scholar 

  • Lions, J. (1973): Perturbations singulieres dans les problemes aux limites et en controle optimale. Lecture Notes in Math., Vol. 323, Springer-Verlag, Berlin.

    Google Scholar 

  • Lattes, R. and Lions, J. (1969): The Method of Quasireversibility. Gordon and Breach, New York.

    Google Scholar 

  • Oleinik, O. and Radkevic, E. (1971): Second order equations with non-negative characteristic form. Itoginaukütehniki, Matemat. Analiz (1969). VINITI, Moscow, 1971, 7–252 (Russian).

    Google Scholar 

  • Lions, P. (1982): Generalized solutions of Hamilton-Jacobi equations. Pitman, London.

    MATH  Google Scholar 

  • Bensoussan, A., Lions, J., and Papanicolaou, G. (1978): Asymptotic Methods in Periodic Structures. North-Holland, Amsterdam.

    Google Scholar 

  • Lions, J. (1980): Asymptotic calculus of variations. In: Meyer, R. and Parter, S. [eds.] (1980), 277–296.

    Google Scholar 

  • Ekeland, I. and Temam, R. (1974): Analyse convexe et problemes variationnels. Dunod, Paris. (English edition: North-Holland, Amsterdam, 1976.)

    Google Scholar 

  • Glowinski, R., Lions, J., and Tremolieres, R. (1976): Analyse numerique des inequations variationnelles, Vols. 1, 2. Gauthier-Villars, Paris.

    Google Scholar 

  • Auslender, A. (1972): Problemes de minimax via V analyse convexe et les inegalites variationnelles. Lecture Notes in Economics, Vol. 77. Springer-Verlag, Berlin.

    Google Scholar 

  • Demjanov, V. and Malozemov, V. (1975): Einfuhrung in die Minimaxprobleme. Geest & Portig, Leipzig.

    Google Scholar 

  • Cea, J. (1971): Optimisation: theorie et algorithmes. Dunod, Paris.

    MATH  Google Scholar 

  • Bensoussan, A., Lions, J., and Temam, R. (1972): Method of decomposition, decentralization, coordination and its applications. In: Lions, J. and Marcuk, G. [eds.] (1975), 144–274 (Russian).

    Google Scholar 

  • Browder, F. (1966): On the unification of the calculus of variations and the theory of monotone nonlinear operators in Banach spaces. Proc. Nat. Acad. Sci. USA 56 (419–425).

    MathSciNet  MATH  Google Scholar 

  • Kluge, R. (1979): Nichtlineare Variationsungleichungen und Extremalaufgaben. VEB Dt. Verl. d. Wiss., Berlin.

    Google Scholar 

  • Jacobs, D. [ed.] (1976): The State of the Art in Numerical Analysis. Academic, London.

    Google Scholar 

  • Dixon, L., Spedicato, E., and Szego, G. (1980): Nonlinear Optimization. Theory and Algorithms. Birkhauser, Boston.

    MATH  Google Scholar 

  • Marcuk, G. (1980): Methodes de calcul numerique. Mir, Moscow (French). (Russian edition: Mir, Moscow, 1977. English edition: Springer, New York, 1982.)

    Google Scholar 

  • Bensoussan, A. and Lions, J. (1975): Control Theory, Numerical Methods and Computer System Modelling. Lecture Notes in Economics, Vol. 107. Springer-Verlag, Berlin.

    Google Scholar 

  • Marcuk, G. [ed.] (1975): Optimization Techniques. IFIP Technical Conferences. Lecture Notes in Computer Science, Vol. 27. Springer-Verlag, Berlin.

    Google Scholar 

  • Cea, J. [ed.] (1976): Optimization Techniques: Modelling and Optimization in the Service of Man. Lecture Notes in Computer Science, Vol. 40/41. Springer-Verlag, Berlin.

    Google Scholar 

  • IFIP Conference (1978): Distributed Parameter Systems, Modelling and Identification. Lecture Notes in Control and Information Science, Vol. 1. Springer-Verlag, Berlin.

    Google Scholar 

  • IFIP Conference (1978a): Optimization Techniques. Lecture Notes in Control and Information Science, Vol. 6/7. Springer-Verlag, Berlin.

    Google Scholar 

  • IFIP Conference (1979): Optimization Techniques. Lecture Notes in Control and Information Science, Vol. 22/23. Springer-Verlag, Berlin.

    Google Scholar 

  • Glowinski, R. and Lions, J. [eds.] (1980): Computing Methods in Applied Sciences and Engineering. North-Holland, Amsterdam.

    MATH  Google Scholar 

  • Tzafestas, S. [ed.] (1980): Simulation of Distributed Parameters and Large-Scale Systems. North-Holland, Amsterdam.

    Google Scholar 

  • Traub, J. [ed.] (1976): Analytic Computation Complexity. Academic, New York.

    Google Scholar 

  • Traub, J. and Wozniakowski, H. (1980): A General Theory of Optimal Algorithms. Academic, New York.

    MATH  Google Scholar 

  • Smale, S. (1981): The fundamental theorem of algebra and complexity theory. Bull. Amer. Math. Soc. (N.S.) 4 (1–36).

    MathSciNet  MATH  Google Scholar 

  • Encyclopedia of Mathematics and Its Applications (1976): Edited by G. C. Rota. Vols. 1 ff Addison-Wesley, Reading, MA, 1976 ff

    Google Scholar 

  • Russian Encyclopedia of Mathematics (1977): Edited by I. Vinogradov, Vol. Iff. Sovetskaja Encyclopedija, Moscow (Russian).

    Google Scholar 

  • Handbook of Applicable Mathematics (1980): Edited by W. Ledermann. Vols. 1–6. Wiley, Chichester, 1980ff.

    Google Scholar 

  • Hilton, P. and Young, G. [eds.] (1980): New Directions in Applied Mathematics.

    Google Scholar 

  • Krasnov, M., Kiselev, G., and Makarenko, I. (1975): Problems and Exercises in the Calculus of Variations. Mir, Moscow.

    MATH  Google Scholar 

  • Bolza, O. (1949): Vorlesungen uber Variationsrechnung. Koehler and Amelang, Leipzig.

    Google Scholar 

  • Gelfand, I. and Fomin, S. (1961): Calculus of Variations. Nauka, Moscow (Russian).

    Google Scholar 

  • Ioffe, A. and Tihomirov, V. (1974): Theory of Extremal Problems. Nauka, Moscow (Russian). (German edition: VEB Dt. Verl. d. Wiss., Berlin, 1979. English edition: North-Holland, New York, 1978.)

    Google Scholar 

  • Oleinikov, V., et al. (1969): Collection of Problems and Examples for the Theory of Automatic Control. Vyssaja Skola, Moscow (Russian).

    Google Scholar 

  • Lee, E. and Markus, L. (1967): Foundations of Optimal Control Theory. Wiley, New York.

    MATH  Google Scholar 

  • Bryson, A. and Ho, Y. (1969): Applied Optimal Control. Blaisdell, New York.

    Google Scholar 

  • Ioffe, A. and Tihomirov, V. (1974): Theory of Extremal Problems. Nauka, Moscow (Russian). (German edition: VEB Dt. Verl. d. Wiss., Berlin, 1979. English edition: North-Holland, New York, 1978.)

    Google Scholar 

  • Fleming, W. and Rishel, R. (1975): Deterministic and Stochastic Optimal Control. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Leitmann, G. (1981): The Calculus of Variations and Optimal Control. Plenum, New York.

    MATH  Google Scholar 

  • Bellman, R. (1957): Dynamic Programming. Princeton University Press, Princeton, N.J.

    MATH  Google Scholar 

  • Bellman, R. (1967): Introduction to the Mathematical Theory of Control Processes, Vols. 1, 2. Academic, New York, 1967–1971.

    Google Scholar 

  • Collatz, L. and Albrecht, J. (1972): Aufgaben aus der angewandten Mathematik. Vols. 1, 2. Akademie-Verlag, Berlin.

    Google Scholar 

  • Dantzig, G. (1963): Linear Programming and Extensions. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Luenberger, D. (1969): Optimization by Vector Space Methods. Wiley, New York.

    MATH  Google Scholar 

  • Holmes, R. (1972): A Course on Optimization and Best Approximation. Lecture Notes in Mathematics, Vol. 257. Springer-Verlag, Berlin.

    Google Scholar 

  • Holmes, R. (1975): Geometrical Functional Analysis. Springer-Verlag, Berlin.

    Google Scholar 

  • Foulds, L. (1981): Optimization Techniques. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Cheney, E. (1966): Introduction to Approximation Theory. McGraw-Hill, New York.

    MATH  Google Scholar 

  • Collatz, L. and Krabs, W. (1973): Approximationstheorie. Teubner, Stuttgart.

    MATH  Google Scholar 

  • Boor, C. de (1978): A Practical Guide to Splines. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Astrom, K. (1970): Introduction to Stochastic Control Theory. Academic, New York.

    Google Scholar 

  • Karlin, S. (1959): Mathematical Methods and Theory in Games, Programming and Economics, Vols. 1, 2. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Owen, G. (1968): Game Theory. Saunders, Philadelphia. (German edition: Springer-Verlag, Berlin, 1971.)

    Google Scholar 

  • Roberts, A. and Varberg, D. (1973): Convex Functions. Academic, New York.

    MATH  Google Scholar 

  • Foulds, L. (1981): Optimization Techniques. Springer-Verlag, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zeidler, E. (1985). Introductory Typical Examples. In: Nonlinear Functional Analysis and its Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5020-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5020-3_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9529-7

  • Online ISBN: 978-1-4612-5020-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics