Haemopoietic Cell Growth Factor: Characterisation and Mode of Action

  • A. D. Whetton
  • T. M. Dexter
Part of the Experimental Biology and Medicine book series (EBAM, volume 8)


The process of haemopoiesis provides a heterogenous population of peripheral blood cells with diverse morphological characteristics and functions. The site of production of these cells is mainly the bone marrow in the adult animal. In the marrow resides a population of pluripotent stem cells which give rise to the mature blood cells (see l). These stem cells can either self-renew (that is, form exact copies of themselves) or differentiate depending on the needs of the organism, in this way the stem cell population can be maintained throughout a life-time (and in fact could be maintained throughout several lifetimes2). A stem cell can also give rise to a series of progenitor cells upon division that are the precursor cells of the different lineages or blood cell types found in the circulation (see 3). The progeny of a p1uripotential stem cell are committed to a defined differentiation pathway whereby there is a restriction as to which mature blood cell type they will be able to yield4.


Progenitor Cell Population Blood Cell Type Haemopoietic Cell Mature Blood Cell Haemopoietic Growth Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Metcalf, D. and Moore, M.A.S. in Haemopoietic cells 550pp (Amsterdam North Holland, 1971).Google Scholar
  2. 2.
    Harrison, D.E. Proc.Nat 1.Acad.Sci., U.S.A. 70, 3184–3188 (1973).CrossRefGoogle Scholar
  3. 3.
    Till, J.E. and McCulloch, E.A. Biochim. Biophys. Acta. 605, 431–459 (1980)PubMedGoogle Scholar
  4. 4.
    Metcalf, D. in Hemopoietic Colonies in vitro. Cloning of Normal and Leukemic Cells, 227pp. (Springer Verlag, 1977).Google Scholar
  5. 5.
    Miyake, T., Kung, C.K.H. and Goldwasser, E. J. Biol. Chem. 252, 5558–5564 (1977).Google Scholar
  6. 6.
    Stanley, E.R. et al. J. Cell Biochem. 21, 151–159 (1983).PubMedCrossRefGoogle Scholar
  7. 7.
    Metcalf, D. in Tissue Growth Factors (ed. Baserga, R) 343–384 (Springer-Verlag, 1981).Google Scholar
  8. 8.
    Burgess, A.W. et al. Biochem. J. 185, 301–314 (1982).Google Scholar
  9. 9.
    Allen, T.D. and Dexter, T.M. Differentiation, 6,191–194 (1976).PubMedCrossRefGoogle Scholar
  10. 10.
    Dexter, T.M. et al. J Supermol. Struct. 13, 513–524 (1980)CrossRefGoogle Scholar
  11. 11.
    Bazil, G.W. et al. Biochem. J. 210,747–759 (1983).Google Scholar
  12. 12.
    Iscove, N.N. et al. J. cell physiol. (suppl)1,65–78 (1982).CrossRefGoogle Scholar
  13. 13.
    Ihle, J. et al. Immunol. Rev.63,532–549 (1982).CrossRefGoogle Scholar
  14. 14.
    Tokota T. et al. Proc. Natl. Acad. Sci., U.S.A. 81, 1070–1074 (1984).CrossRefGoogle Scholar
  15. 15.
    Schräder, J.W. Crit. Rev. Immunol. 4, 197–277 (1983).PubMedGoogle Scholar
  16. 16.
    Dexter T.M. et al. J. Exp. Med. 152, 1036–1047 (1980).PubMedCrossRefGoogle Scholar
  17. 17.
    Greenberger, J.S. J. Supramol. Struct. 13, 501–514 (1982).CrossRefGoogle Scholar
  18. 18.
    Whetton, A.D. and Dexter, T.M. Nature (London) 303, 629–631 (1983).CrossRefGoogle Scholar
  19. 19.
    Whetton, A.D., Bazill, G.W. and Dexter, T.M. EMBO J. 3, 409–413 (1984).PubMedGoogle Scholar

Copyright information

© The Humana Press Inc. 1985

Authors and Affiliations

  • A. D. Whetton
    • 1
  • T. M. Dexter
    • 1
  1. 1.Paterson LaboratoriesChristie Hospital & Holt Radium InstituteManchesterUK

Personalised recommendations