Skip to main content

Stochastic Population Theory: Mathematical Evolution of a Genetical Model

  • Conference paper

Abstract

The use of mathematical modeling in characterizing and analyzing stochastic fluctuation phenomena among individuals in natural populations has a long and honorable history dating back to the first quarter of the twentieth century. Indeed, more than sixty years have passed since R. A. Fisher (1922) introduced diffusion theory in his analysis of the dominance ratio in population genetics theory. However, in the last decade, coincident with monumental progress in computational techniques and the introduction of novel ideas from the mathematical theory of probability and stochastic processes, the pace of the evolution of stochastic population theory—the use of mathematical techniques to explain and predict the random behavior of individuals in natural populations—has quickened markedly.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. A. Dawson and K. J. Hochberg, “Wandering random measures in the Fleming-Viot model,” Annals of Probability, 10 (1982), 554–580.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. A. Dawson and K. J. Hochberg, “Qualitative behavior of a selectively neutral model,” Theoretical Population Biology, 23 (1983), 1–18.

    Article  MATH  Google Scholar 

  3. D. A. Dawson and K. J. Hochberg, “Function-valued duals for measure-valued processes and applications,” Contemporary Math, 41 (1985), 55–69.

    MathSciNet  Google Scholar 

  4. D. A. Dawson and K. J. Hochberg, to appear (1986).

    Google Scholar 

  5. D. A. Dawson and T. G. Kurtz, “Application of duality to measure-valued diffusion processes,” Lect. Notes in Control and Information Sci., 42 (1982), 91–105.

    Article  MathSciNet  Google Scholar 

  6. P. Donnelly, “The transient behaviour of the Moran model in population genetics,” Math. Proc. Camb. Phil. Soc., 95 (1984), 345–358.

    Article  MathSciNet  Google Scholar 

  7. P. Donnelly, “Dual processes and an invariance result for exchangeable models in population genetics,” J. Math. Biology, to appear (1985).

    Google Scholar 

  8. P. Donnelly, “Dual processes in population genetics,” Proc. Heidelberg Conf. on Spatial Processes, to appear (1985).

    Google Scholar 

  9. S. N. Ethierand R.C. Griffiths, “The infinitely-many-sites model as a measure- valued diffusion,” to appear (1985).

    Google Scholar 

  10. S.N. Ethier and T.G. Kurtz, “The infinitely-many-alleles model with selection as a measure-valued diffusion,” to appear (1985).

    Google Scholar 

  11. W. J. Ewens, Mathematical Population Genetics, Springer-Verlag, Berlin-Heidel- berg-New York, 1979.

    MATH  Google Scholar 

  12. R. A. Fisher, “On the dominance ratio,” Proc. Roy. Soc. Edin., 42 (1922), 321–431.

    Google Scholar 

  13. W. H. Fleming and M. Viot, “Some measure-valued population processes,” in Proc. Int. Conf. on Stochastic Analysis, Academic, New York, 1978, 97–108.

    Google Scholar 

  14. W. H. Fleming and M. Viot, “Some measure-valued Markov processes in population genetics theory,” Indiana Univ. Math. J., 28 (1979), 817–843.

    Article  MathSciNet  MATH  Google Scholar 

  15. K. J. Hochberg, “Microscopic clustering of population processes,” Lect. Notes in Biomathematics, Vol. 52, Springer-Verlag, 1983, 18–24.

    Google Scholar 

  16. R. Holley and T. Liggett, “Ergodic theorems for weakly interacting systems and the voter model,” Annals of Probability, 3 (1975), 643–663.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Holley and D. W. Stroock, “Dual processes and their aplications to infinite interacting systems,” Advances in Math, 32 (1979), 149–174.

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Holley, D.W. Stroock and D. Williams, “Applications of dual processes to diffusion theory,” Proc. Symp. Pure Math., Vol. 31, American Mathematical Society, Providence, 1977, 23–26.

    Google Scholar 

  19. H. Kesten, “The number of distinguishable alleles according to the Ohta-Kimura model of neutral mutation,” J. Math. Biology, 10 (1980a), 167–187.

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Kesten, “The number of alleles in electrophoretic experiments,” Theoretical Population Biology, 18 (1980b), 290–294.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Kimura, “Evolutionary rate of the molecular level,” Nature, 217 (1968), 624–626.

    Article  Google Scholar 

  22. M. Kimura, “The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutation,” Genetics, 61 (1969), 893–903.

    Google Scholar 

  23. M. Kimura and J. F. Crow, “The number of alleles that can be maintained in a finite population,” Genetics, 49 (1964), 725–738.

    Google Scholar 

  24. M. Kimura and T. Ohta, “Distribution of allelic frequencies in a finite population under stepwise production of neutral alleles,” Proc. Nat. Acad. Sci. U.S.A., 72 (1975), 2761–2764.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Kimura and T. Ohta, “Stepwise mutation model and distribution of allelic frequencies in a finite population,” Proc. Nat. Acad. Sci. U.S.A., 75(1978), 2868– 2872.

    Google Scholar 

  26. J.F.C. Kingman, “Coherent random walks arising in some genetical models,” Proc. Roy. Soc. London A, 351 (1976), 19–31.

    Article  MathSciNet  MATH  Google Scholar 

  27. J.F.C. Kingman, Mathematics of Genetic Diversity, Society for Industrial and Applied Mathematics, Philadelphia, 1980.

    Google Scholar 

  28. P. A. P. Moran, “Wandering distributions and the electrophoretic profile,” Theoretical Population Biology, 8 (1975), 318–330.

    Article  MathSciNet  Google Scholar 

  29. P. A. P. Moran, “Wandering distributions and the electrophoretic profile, II,” Theoretical Population Biology, 10 (1976), 145–149.

    Article  MathSciNet  Google Scholar 

  30. T. Ohta and M. Kimura, “Simulation studies on electrophoretically detectable genetic variability in a finite population,” Genetics, 76 (1974), 614–624.

    Google Scholar 

  31. T. Shiga, “Diffusion processes in population Genetics,” J. Math. Kyoto Univ., 21 (1981), 131–151.

    Google Scholar 

  32. T. Shiga, A. Shimizu and H. Tanaka, “Some measure-valued diffusion processes associated with genetical diffusion models,” preprint (1986).

    Google Scholar 

  33. F. Spitzer, “Interaction of Markov processes,” Advances in Math, 5 (1970), 246–290.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Gail Young on his seventieth birthday

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc

About this paper

Cite this paper

Hochberg, K.J. (1986). Stochastic Population Theory: Mathematical Evolution of a Genetical Model. In: Ewing, R.E., Gross, K.I., Martin, C.F. (eds) The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4984-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4984-9_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9385-9

  • Online ISBN: 978-1-4612-4984-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics