Skip to main content

Progress Towards a Model to Describe Jet/Aerodynamic-Surface Interference Effects

  • Conference paper
Recent Advances in Aerodynamics

Abstract

A first generation model is presented which relates the pressure distribution on an aerodynamic surface to properties of the jet plume. The characteristics of a jet in a crossflow that are of primary importance in determining the pressure distribution on the aerodynamic surface are assumed to be:

  1. (1)

    a pair of contrarotating vortices associated with a jet in a crossflow,

  2. (2)

    entrainment of crossflow fluid into the jet plume,

  3. (3)

    a wake region near the aerodynamic surface and extending downstream from the jet orifice.

The model is applied to the configuration of a round jet exhausting perpendicularly through a flat plate into a uniform crossflow for a range of jet-to-crossflow velocity ratios from 3 to 10. It is demonstrated that the model is capable of describing the measured pressure distribution on the flat plate with model parameters that are compatable with the incomplete description of the vortex pair that is available. The force and moment on the plate are presented as functions of jet-to-crossflow velocity ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A:

area of cross section to jet plume or model parameter

a, b, c,:

model parameters

Cp :

pressure coefficient

E, EA, EB :

entrainment coefficients

EAo :

entrainment parameter for jet in crossflow

Eso :

entrainment parameter for submerged jet

F:

blending function for wake correction

g:

Gaussian function used in wake correction

M:

pitching moment on reference circle of flat plate

\(\hat n\) :

unit vector normal to cross section of jet plume

p, q:

constants in a Padé approximation

Q:

mass flux

R:

effective jet-to-crossflow velocity ratio

s:

arc length

T:

jet thrust

U ∞:

crossflow speed

x, y, z:

coordinates axes

γ:

dimensionless vortex strength

ρ:

density

1, 2, 3,...:

distinguish between model, parameters

c:

refers to centerline

meas:

measured value

m:

locate or denote maximum value

o:

inital value

pot:

potential flow value

υ:

refers to vortex properties

References

  1. Abramovich G. N. The Theory of Turbulent Jets, Cambridge: MIT Press, 1963, 541–56.

    Google Scholar 

  2. Albertson L. M., et al. “Diffusion of Submerged Jets,” Trans. ASGE, Vol.115 (1950), 639–64.

    Google Scholar 

  3. Aoyagi K., and Snyder P. K. “Experimental Investigation of a Jet Inclined to a Subsonic Cross Flow,” AIAA Paper 81–2610, 1981.

    Google Scholar 

  4. Baker A. J., Orzechowski J. A., and Manhardt P. D. “A Numerical Three-Dimensional Turbulent Simulation of a Subsonic V-STOL Jet in a Cross Flow Using a Finite Element Algorithm,” Report NAD C- 79021–60, 1981.

    Google Scholar 

  5. Beatty T. D., and Kress S. S. “Prediction Methodology for Propulsive Induced Forces and Moments of V/STOL Aircraft in Transition/STOL Flight,” Vol. 1, Final Report, NADG-77119-30, 1979.

    Google Scholar 

  6. Bradbury L.J.S. “Some Aspects of Jet Dynamics and Their Applications for VTOL Research,” AGARD-CP-308, 1981.

    Google Scholar 

  7. Dietz W. E. Jr., “A Method for Calculating the Induced Pressure Distribution Associated With a Jet in a Cross Flow,” M. S. thesis, Univ. of Florida; also NASA CR-146434, 1975.

    Google Scholar 

  8. Fearn R. L., and Weston R. P. “Vorticity Associated With a Jet in a Cross Flow,” AIAA J., Vol. 12, No. 12 (1974), 1666–71.

    Article  ADS  Google Scholar 

  9. Fearn R. L., and Weston R. P. “Induced Pressure Distribution of a Jet in a Cross Flow,” NASA TN D-7916, 1975.

    Google Scholar 

  10. Fearn R. L., and Weston R. P. “Induced Velocity Field of a Jet in a Cross Flow,” NASA TP-1087, 1978.

    Google Scholar 

  11. Fearn R. L., and Weston R. P. “Velocity Field of a Round Jet in a Cross Flow for Various Jet Injection Angles and Velocity Ratios,” NASA TP-1506, 1979.

    Google Scholar 

  12. Hackett J. E., “Living With Solid-Walled Wind Tunnels,” AIAA Paper 82-0583, 1982.

    Google Scholar 

  13. Harms L. “Experimentelle Untersuchungen über das Strömungsfeld eines heissen turbulenten Strahles bei Queranströmung, Teil II.” Deutsche Forschungs—und Versuchsanstalt für Luft—und Raumfahrt E. V. ZNW, Goettingen, Germany, Report 1-B 157-78 A 21, 1973; Trans, as NASA TTF-15706, 1974.

    Google Scholar 

  14. Helwig J. T. and Council K. A., eds. SAS User’s Guide, Cary, NC: SAS Institute, 1979, 317–29.

    Google Scholar 

  15. Jordinson R. “Flow in a Jet Directed Normal to the Wind,” RampM No. 8074, Brit. A.R.C., 1958.

    Google Scholar 

  16. Kamotani Y., and Greber I. “Experiments on a Turbulent Jet in a Cross Flow,” AIAA J., Vol 10, No. 11 (1972), 1425–29.

    Article  ADS  Google Scholar 

  17. Krausche D., Fearn R. L., and Weston R. P. “Round Jet in a Cross Flow: Influence of Jet Injection Angle on Vortex Properties,” AIAA Journal, Vol. 16, No. 6 (1978), 636–37.

    Article  ADS  Google Scholar 

  18. Kuhn R. E., “An Empirical Method for Estimating the Jet-Induced Effects on V/STOL Configuration in Transition,” Task Report, Contract No. N62269-79-C-0231, 1979.

    Google Scholar 

  19. Margason R. J. “The Path of a Jet Directed at Large Angles to a Subsonic Free Stream,” NASA TN D-4919, 1968.

    Google Scholar 

  20. Moussa Z. M., Trischka J. W., and Eskinazi S. “The Near Field in the Mixing of a Round Jet With a Cross-Stream,” J. Fluid Mech., Vol. 80, Part 1 (1977), 49–80.

    Google Scholar 

  21. Ricou F. P., and Spalding D. B. “Measurements of Entrainment by Axisymmetric Turbulent Jets,” J. Fluid Mech., Vol. 2 (1961), 21–32.

    Article  ADS  Google Scholar 

  22. Rubberts P. E., et al. “A General Method for Determining the Aerodynamic Characteristics of Fan-In-Wing Configurations; Vol. 1: Theory and Application,” Final Report, Contract DA 44-177-AMG- 828(T), 1967.

    Google Scholar 

  23. Soulier A., “Essais à Sima pour Researcherches de base sur les Interactions de Jet—Répartition des Pressions de l’orifice du jet,” Office National d’Etudes et de Recherches Aérospatiales, Document no. 1/258 GY-Fascicule no. 1/5, 1968; Trans, as NASA TTF-14066, 1972a.

    Google Scholar 

  24. Soulier A., “Essais à Sima pour Researcherches de base sur les Interactions de Jet—Répartition des Pressions et des Vitesses dans le Jet tuyere type idéale (àfroid),” Office National d’Etudes et de Recherches Aérospatiales, Document no. 1/258 GY-Fascicule no. 2/5, 1968; Trans, as NASA TTF-14072, 1972b.

    Google Scholar 

  25. Spree B. M. “Summary Remarks on the AGARD/FDP Symposium on the Fluid Dynamics of Jets With Application to V/STOL,” A GARD- CP-308, 1981.

    Google Scholar 

  26. Squire H. B., and Trouncer J. “Round Jets in a General Stream,” R.A.E. RampM, No. 1974, 1944.

    Google Scholar 

  27. Thames F. C., and Weston R. P. “Properties of Aspect-Ratios-4.0 Rectangular Jets in a Subsonic Cross Flow,” AIAA Paper 78–1508, 1978.

    Google Scholar 

  28. Thompson A. M. “The Flow Induced by Jets Exhausting Normally From a Plane Wall Into an Airstream,” Ph.D. thesis, Univ. of London, 1971a.

    Google Scholar 

  29. Thompson J. F., “Two Approaches to the Three-Dimensional Jet- In-Cross-Wind Problem: A Vortex Lattice Model and a Numerical Solution of the Navier-Stokes Equations,” Ph.D. thesis, Georgia Institute of Technology, 1971b.

    Google Scholar 

  30. Weston R. P., Raj P., and Fearn R. L. “Implicit Finite-Difference Computation for the Diffusion of a Contrarotating Vortex Pair,” AIAA Journal, accepted for publication.

    Google Scholar 

  31. Wooler, P. T. “V/STOL Aircraft Aerodynamic Prediction Methods Investigation,” USAF AFFDL TR-72-26, Vols. I-IV, 1972.

    Google Scholar 

  32. Wu, J. C., et al. “Experimental and Analytical Investigations of Jets Exhausting Into a Deflecting Stream,” J. Aircraft, Vol. 7, No. 1 (1970), 44–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this paper

Cite this paper

Fearn, R.L. (1986). Progress Towards a Model to Describe Jet/Aerodynamic-Surface Interference Effects. In: Krothapalli, A., Smith, C.A. (eds) Recent Advances in Aerodynamics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4972-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4972-6_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9379-8

  • Online ISBN: 978-1-4612-4972-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics