Skip to main content

Are Red Tides Correlated to Spring-Neap Tidal Mixing?: Use Of A Historical Record to Test Mechanisms Responsible for Dinoflagellate Blooms

  • Chapter
Tidal Mixing and Plankton Dynamics

Part of the book series: Lecture Notes on Coastal and Estuarine Studies ((COASTAL,volume 17))

Abstract

Vertical mixing is generally considered to be one of the most influential factors affecting phytoplankton abundance in the ocean (Sverdrup, 1953; Gran and Braarud, 1935). Changes in both phytoplankton abundance and species composition are thought to occur as a function of turbulence (Margalef, 1978). Research has therefore been directed at the sources of water column turbulence in nature and how these sources affect phytoplankton community dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, W.E. 1940. Twenty years of statistical studies of marine plankton dinoflagellates of southern California. Amer. Midi. Nat. 26: 603–635.

    Article  Google Scholar 

  • Balch, W.M. 1981. An apparent lunar tidal cycle of phytoplankton blooming and community succession in the Gulf of Maine. J. exp. mar. Biol. Ecol. 55: 65–77.

    Article  Google Scholar 

  • Balch, W.M., P.C. Reed and S.C. Surrey-Gent. 1983. Spatial and temporal variability of dinoflagellate cyst abundance in a tidal estuary. Can. J. Fish. Aquat. Sci. (Suppl.) 40: 244–261.

    Article  Google Scholar 

  • Bendat, J.S. and A.G. Piersol. 1971. Random data: analysis and measurement procedures. Wiley-Interscience, New York. 407 p.

    Google Scholar 

  • Brongersma-Sanders, M. 1957. Mass mortality in the sea. Mem. Geol. Soc. Am. 67: 941–1010.

    Google Scholar 

  • Eppley, R.W. and W.G. Harrison. 1975. Physiological ecology by Gonyaulax polyedra, a red water dinoflagellate off Southern California,p. 11–22. In V. R. LoCicero (ed.). The First International Conference on Toxic Dinoflagellate Blooms. Mass. Sci. Techn. Found., Wakefield, MA, USA.

    Google Scholar 

  • Garrett, C.J.R. and W. Munk. 1971. The age of the tide and the “Q” of the ocean. Deep-Sea Res. 18: 493–503.

    Google Scholar 

  • Gran, H.H. and T. Braarud. 1935. A quantitative study of the phyto-plankton in the Bay of Fundy and the Gulf of Maine including observations on hydrography, chemistry, and turbidity. J. Biol. Bd. Can. 1: 219–467.

    Google Scholar 

  • Haas, L.W. 1977. The effect of the spring-neap tidal cycle on the vertical salinity structure of the James, York and Rappahannock Rivers, Virginia, U.S.A. Est. Coast. Mar. Sci. 5: 485–496.

    Article  Google Scholar 

  • Haas, L.W., S.J. Hastings and K.L. Webb. 1980. Phytoplankton response to a stratification-mixing cycle in the York River Estuary during late summer. In B.J. Neilson and L.E. Crown (eds.). Estuaries and Nutrients. The Humana Press Inc., Clifton, NJ.

    Google Scholar 

  • Harrison, W.G. 1976. Nitrate metabolism of the red tide dinoflagellate Gonyaulax polyedra. J. exp. mar. Biol. Ecol. 21: 199–209.

    Article  CAS  Google Scholar 

  • Hayward, D., L.W. Haas, J.D. Boon, III, K.L. Webb and K.K. Friedland. A regression model of neap-spring tidally associated stratification variation in the York River estuary, Maryland. In M. Bowman, C.M. Yentsch and W.T. Peterson (eds.), Tidal Mixing and Plankton Dynamics. Springer-Verlag. This volume

    Google Scholar 

  • Holligan, P.M. and D.S. Harbour. 1977. Vertical distribution and succession of phytoplankton in the western English Channel. J. mar. biol. Assn. U.K. 5: 1075–1093.

    Article  Google Scholar 

  • Holmes, R.W., P.M. Williams and R.W. Eppley. 1967. Red water in La Jolla Bay, 1964–1966. Limnol. Oceanogr. 12: 503–512.

    Article  CAS  Google Scholar 

  • Jackson, G.A. 1977. Nutrients and production of giant kelp, Macrocystis pyrifera off southern California. Limnol. Oceanogr. 22: 979–995.

    Article  CAS  Google Scholar 

  • Jackson, G.A. 1983. The physical and chemical environment of a kelp community, pp. 11–37. In W. Bascom (ed.). The Effects of Waste Disposal on Kelp Community. Southern California Coastal Water Research Project, Long Beach, CA. 328 p.

    Google Scholar 

  • Kamykowski, D. 1979. The growth response of a model Gymnodinium splendens in stationary and wavy water columns. Mar. Biol. 50: 289–303.

    Article  Google Scholar 

  • Kamykowski, D. 1981a. The simulation of a southern California red tide using characteristics of a simultaneously-measured internal wave field. Ecological Modeling 12: 253–265.

    Article  Google Scholar 

  • Kamykowski, D. 1981b. Laboratory experiments on the diurnal vertical migration of marine dinoflagellates through temperature gradients. Mar. Biol. 62: 57–64.

    Article  Google Scholar 

  • Ketchum, B. and D.J. Keen. 1948. Unusual phosphorous concentrations in the Florida “Red Tide” seawater. J. Mar. Res. 7 (1): 17–21.

    CAS  Google Scholar 

  • Margalef, R. 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1: 493–509.

    Google Scholar 

  • Margalef, R. 1979. Functional morphology of organisms involved in red tides as adapted to decaying turbulence, pp. 89–94. In D.L. Taylor and H.H. Seliger (eds.). Toxic Dinoflagellate Blooms. Elsevier/North Holland.

    Google Scholar 

  • Nautical Almanac, 1900–1983. United States Nautical Almanac Office, U.S. Naval Observatory, Washington, D.C.

    Google Scholar 

  • Paasche, E., I. Bryceson and K. Tangen. 1984. Interspecific varia¬tion in dark nitrogen uptake by dinoflagellates. J. Phycol. 20: 394–401.

    Article  CAS  Google Scholar 

  • Pingree, R.D., P.M. Holligan, G.T. Mardell and R.N. Head. 1976. The influence of physical stability on spring, summer and autumn phytoplankton blooms in the Celtic Sea. J. mar. biol. Assn. U.K. 56: 845–873.

    Article  CAS  Google Scholar 

  • Pond, S. and G.L. Pickard. 1978. Introductory dynamic oceanography. Pergamon Press, New York. 241 p.

    Google Scholar 

  • Postma, H. 1967. Sediment transport and sedimentation in the estuarine environment, pp. 158–179. In G.H. Lauff (ed.). Amer. Assoc. Adv. Sci., Publication 83.

    Google Scholar 

  • Ryther, J.H. 1955. Ecology of autotrophic marine dinoflagellates with reference to red water conditions, pp. 387–414. In F.H. Johnson (ed.). The Luminescence of Biological Systems. Amer. Assoc. Adv. Sci., Washington, D.C.

    Google Scholar 

  • Simpson, J.H. 1981. The shelf-sea fronts: implications of their existence and behavior. Phil. Trans. R. Soc. Lond. A302: 531–546.

    Article  Google Scholar 

  • Simpson, J.H. and D. Bowers. 1981. Models of stratification and frontal movement in shelf seas. Deep-Sea Res. 28: 727–738.

    Article  Google Scholar 

  • Simpson, J.H. and J.R. Hunter. 1974. Fronts in the Irish Sea. Nature 250: 404–406.

    Article  Google Scholar 

  • Sinclair, M. 1978. Summer phytoplankton variability in the lower St. Lawrence Estuary. J. Fish. Res. Bd. Can. 35: 1171–1185.

    Article  Google Scholar 

  • Sverdrup, H.U. 1953. On conditions for the vernal blooming of phytoplankton. J. Cons. Perm. Internatl. Explor. Mer. 18: 287–295.

    Google Scholar 

  • Taylor, D.L. and H.H. Seliger. (eds.) 1979. Toxic Dinoflagellate Blooms. Elsevier/North Holland, New York. 505 p.

    Google Scholar 

  • U.S. Dept. Commerce, NOAA National Ocean Survey. Tide tables high and low water prediction. U.S. Govt. Printing Ofc., Washington, D.C.

    Google Scholar 

  • Webb, K.L. and C.F. D’Elia. 1980. Nutrient and oxygen redistribution during a spring neap tidal cycle in a temperate estuary. Science 207: 983–985.

    Article  PubMed  CAS  Google Scholar 

  • Winter, D.F., K. Banse and G.C. Anderson. 1975. The dynamics of phytoplankton blooms in Puget Sound, a fjord in the Northwestern United States. Mar. Biol. 29: 139–176.

    Article  Google Scholar 

  • Yentsch, C.M., P.M. Holligan, W.M. Balch and A. Tvirbutas. Tidal stirring vs. stratification: Phytoplankton dynamics with special reference to toxic dinoflagellates. In M. Bowman, C.M. Yentsch and W.T. Peterson (eds.). Tidal Mixing and Plankton Dynamics. Springer-Verlag. This volume.

    Google Scholar 

  • Zar, J.H. 1974. Biostatistical analysis. Prentice–Hall Inc., N.J. 620 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Balch, W.M. (1986). Are Red Tides Correlated to Spring-Neap Tidal Mixing?: Use Of A Historical Record to Test Mechanisms Responsible for Dinoflagellate Blooms. In: Bowman, M.J., Yentsch, C.M., Peterson, W.T. (eds) Tidal Mixing and Plankton Dynamics. Lecture Notes on Coastal and Estuarine Studies, vol 17. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4966-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4966-5_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96346-4

  • Online ISBN: 978-1-4612-4966-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics