Are Red Tides Correlated to Spring-Neap Tidal Mixing?: Use Of A Historical Record to Test Mechanisms Responsible for Dinoflagellate Blooms

  • W. M. Balch
Part of the Lecture Notes on Coastal and Estuarine Studies book series (COASTAL, volume 17)

Abstract

Vertical mixing is generally considered to be one of the most influential factors affecting phytoplankton abundance in the ocean (Sverdrup, 1953; Gran and Braarud, 1935). Changes in both phytoplankton abundance and species composition are thought to occur as a function of turbulence (Margalef, 1978). Research has therefore been directed at the sources of water column turbulence in nature and how these sources affect phytoplankton community dynamics.

Keywords

Biomass Migration Chlorophyll Europe Phytoplankton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, W.E. 1940. Twenty years of statistical studies of marine plankton dinoflagellates of southern California. Amer. Midi. Nat. 26: 603–635.CrossRefGoogle Scholar
  2. Balch, W.M. 1981. An apparent lunar tidal cycle of phytoplankton blooming and community succession in the Gulf of Maine. J. exp. mar. Biol. Ecol. 55: 65–77.CrossRefGoogle Scholar
  3. Balch, W.M., P.C. Reed and S.C. Surrey-Gent. 1983. Spatial and temporal variability of dinoflagellate cyst abundance in a tidal estuary. Can. J. Fish. Aquat. Sci. (Suppl.) 40: 244–261.CrossRefGoogle Scholar
  4. Bendat, J.S. and A.G. Piersol. 1971. Random data: analysis and measurement procedures. Wiley-Interscience, New York. 407 p.Google Scholar
  5. Brongersma-Sanders, M. 1957. Mass mortality in the sea. Mem. Geol. Soc. Am. 67: 941–1010.Google Scholar
  6. Eppley, R.W. and W.G. Harrison. 1975. Physiological ecology by Gonyaulax polyedra, a red water dinoflagellate off Southern California,p. 11–22. In V. R. LoCicero (ed.). The First International Conference on Toxic Dinoflagellate Blooms. Mass. Sci. Techn. Found., Wakefield, MA, USA.Google Scholar
  7. Garrett, C.J.R. and W. Munk. 1971. The age of the tide and the “Q” of the ocean. Deep-Sea Res. 18: 493–503.Google Scholar
  8. Gran, H.H. and T. Braarud. 1935. A quantitative study of the phyto-plankton in the Bay of Fundy and the Gulf of Maine including observations on hydrography, chemistry, and turbidity. J. Biol. Bd. Can. 1: 219–467.Google Scholar
  9. Haas, L.W. 1977. The effect of the spring-neap tidal cycle on the vertical salinity structure of the James, York and Rappahannock Rivers, Virginia, U.S.A. Est. Coast. Mar. Sci. 5: 485–496.CrossRefGoogle Scholar
  10. Haas, L.W., S.J. Hastings and K.L. Webb. 1980. Phytoplankton response to a stratification-mixing cycle in the York River Estuary during late summer. In B.J. Neilson and L.E. Crown (eds.). Estuaries and Nutrients. The Humana Press Inc., Clifton, NJ.Google Scholar
  11. Harrison, W.G. 1976. Nitrate metabolism of the red tide dinoflagellate Gonyaulax polyedra. J. exp. mar. Biol. Ecol. 21: 199–209.CrossRefGoogle Scholar
  12. Hayward, D., L.W. Haas, J.D. Boon, III, K.L. Webb and K.K. Friedland. A regression model of neap-spring tidally associated stratification variation in the York River estuary, Maryland. In M. Bowman, C.M. Yentsch and W.T. Peterson (eds.), Tidal Mixing and Plankton Dynamics. Springer-Verlag. This volumeGoogle Scholar
  13. Holligan, P.M. and D.S. Harbour. 1977. Vertical distribution and succession of phytoplankton in the western English Channel. J. mar. biol. Assn. U.K. 5: 1075–1093.CrossRefGoogle Scholar
  14. Holmes, R.W., P.M. Williams and R.W. Eppley. 1967. Red water in La Jolla Bay, 1964–1966. Limnol. Oceanogr. 12: 503–512.CrossRefGoogle Scholar
  15. Jackson, G.A. 1977. Nutrients and production of giant kelp, Macrocystis pyrifera off southern California. Limnol. Oceanogr. 22: 979–995.CrossRefGoogle Scholar
  16. Jackson, G.A. 1983. The physical and chemical environment of a kelp community, pp. 11–37. In W. Bascom (ed.). The Effects of Waste Disposal on Kelp Community. Southern California Coastal Water Research Project, Long Beach, CA. 328 p.Google Scholar
  17. Kamykowski, D. 1979. The growth response of a model Gymnodinium splendens in stationary and wavy water columns. Mar. Biol. 50: 289–303.CrossRefGoogle Scholar
  18. Kamykowski, D. 1981a. The simulation of a southern California red tide using characteristics of a simultaneously-measured internal wave field. Ecological Modeling 12: 253–265.CrossRefGoogle Scholar
  19. Kamykowski, D. 1981b. Laboratory experiments on the diurnal vertical migration of marine dinoflagellates through temperature gradients. Mar. Biol. 62: 57–64.CrossRefGoogle Scholar
  20. Ketchum, B. and D.J. Keen. 1948. Unusual phosphorous concentrations in the Florida “Red Tide” seawater. J. Mar. Res. 7 (1): 17–21.Google Scholar
  21. Margalef, R. 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1: 493–509.Google Scholar
  22. Margalef, R. 1979. Functional morphology of organisms involved in red tides as adapted to decaying turbulence, pp. 89–94. In D.L. Taylor and H.H. Seliger (eds.). Toxic Dinoflagellate Blooms. Elsevier/North Holland.Google Scholar
  23. Nautical Almanac, 1900–1983. United States Nautical Almanac Office, U.S. Naval Observatory, Washington, D.C.Google Scholar
  24. Paasche, E., I. Bryceson and K. Tangen. 1984. Interspecific varia¬tion in dark nitrogen uptake by dinoflagellates. J. Phycol. 20: 394–401.CrossRefGoogle Scholar
  25. Pingree, R.D., P.M. Holligan, G.T. Mardell and R.N. Head. 1976. The influence of physical stability on spring, summer and autumn phytoplankton blooms in the Celtic Sea. J. mar. biol. Assn. U.K. 56: 845–873.CrossRefGoogle Scholar
  26. Pond, S. and G.L. Pickard. 1978. Introductory dynamic oceanography. Pergamon Press, New York. 241 p.Google Scholar
  27. Postma, H. 1967. Sediment transport and sedimentation in the estuarine environment, pp. 158–179. In G.H. Lauff (ed.). Amer. Assoc. Adv. Sci., Publication 83.Google Scholar
  28. Ryther, J.H. 1955. Ecology of autotrophic marine dinoflagellates with reference to red water conditions, pp. 387–414. In F.H. Johnson (ed.). The Luminescence of Biological Systems. Amer. Assoc. Adv. Sci., Washington, D.C.Google Scholar
  29. Simpson, J.H. 1981. The shelf-sea fronts: implications of their existence and behavior. Phil. Trans. R. Soc. Lond. A302: 531–546.CrossRefGoogle Scholar
  30. Simpson, J.H. and D. Bowers. 1981. Models of stratification and frontal movement in shelf seas. Deep-Sea Res. 28: 727–738.CrossRefGoogle Scholar
  31. Simpson, J.H. and J.R. Hunter. 1974. Fronts in the Irish Sea. Nature 250: 404–406.CrossRefGoogle Scholar
  32. Sinclair, M. 1978. Summer phytoplankton variability in the lower St. Lawrence Estuary. J. Fish. Res. Bd. Can. 35: 1171–1185.CrossRefGoogle Scholar
  33. Sverdrup, H.U. 1953. On conditions for the vernal blooming of phytoplankton. J. Cons. Perm. Internatl. Explor. Mer. 18: 287–295.Google Scholar
  34. Taylor, D.L. and H.H. Seliger. (eds.) 1979. Toxic Dinoflagellate Blooms. Elsevier/North Holland, New York. 505 p.Google Scholar
  35. U.S. Dept. Commerce, NOAA National Ocean Survey. Tide tables high and low water prediction. U.S. Govt. Printing Ofc., Washington, D.C.Google Scholar
  36. Webb, K.L. and C.F. D’Elia. 1980. Nutrient and oxygen redistribution during a spring neap tidal cycle in a temperate estuary. Science 207: 983–985.PubMedCrossRefGoogle Scholar
  37. Winter, D.F., K. Banse and G.C. Anderson. 1975. The dynamics of phytoplankton blooms in Puget Sound, a fjord in the Northwestern United States. Mar. Biol. 29: 139–176.CrossRefGoogle Scholar
  38. Yentsch, C.M., P.M. Holligan, W.M. Balch and A. Tvirbutas. Tidal stirring vs. stratification: Phytoplankton dynamics with special reference to toxic dinoflagellates. In M. Bowman, C.M. Yentsch and W.T. Peterson (eds.). Tidal Mixing and Plankton Dynamics. Springer-Verlag. This volume.Google Scholar
  39. Zar, J.H. 1974. Biostatistical analysis. Prentice–Hall Inc., N.J. 620 p.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • W. M. Balch
    • 1
  1. 1.Institute of Marine Resources, A-018 Scripps Institution of Oceanography University of CaliforniaSan Diego La JollaUSA

Personalised recommendations