Real-Time Characterization of Individual Marine Particles at Sea: Flow Cytometry

  • C. M. Yentsch
  • T. L. Cucci
  • D. A. Phinney
  • J. A. Topinka
Part of the Lecture Notes on Coastal and Estuarine Studies book series (COASTAL, volume 17)

Abstract

Oceanographers have always wrestled with the time-space dilemma. The enormity of the oceans and the manifold physical, chemical and biological processes compound to make ‘sampling’ in the oceanic realm an omni-present problem. For the most part, the oceanographer has been wed to the research vessel. This has heavily restricted and frequently determined experimental design. It is unlikely that measurements which are widely spaced in time and space will provide further fruitful information on the rate of processes in the oceans.

Keywords

Chlorophyll Mercury Manifold Phytoplankton Microalgae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arvola, L. 1984. A comparison of electronic particle counting with microscopic determination of phytoplankton and chlorophyll a concentrations in three Finnish lakes. Ann. Bot. Fennici 21: 117–142.Google Scholar
  2. Blasco, D., T.T. Packard and P.C. Garfiled. 1982. Size dependence of growth rate, respiratory electron transport system activity and chemical composition in marine diatoms in the laboratory. J. Phycol. 18: 56–63.CrossRefGoogle Scholar
  3. Campbell, J.W., C.M. Yentsch, J.A. Topinka and T. Cucci. 1985. Flow cytometric observations of chlorophyll synthesis and cell division patterns in clonal cultures of Dunaliella tertiolecta. Submitted.Google Scholar
  4. Campbell, J.W., C.M. Yentsch, J.A. Topinka and T. Cucci. 1985. Flow cytometric observations of chlorophyll synthesis and cell division patterns in clonal cultures of Dunaliella tertiolecta. Submitted.Google Scholar
  5. Horan, P.K. and L.L. Wheeless, Jr. 1977. Quantitative single cell analysis and sorting. Rapid analysis and sorting of cells is emerging as an important new tecnology in research and medicine. Science 198: 149–157.PubMedCrossRefGoogle Scholar
  6. Hutter, J.-J. and H.E. Eipel. 1978. Advances in determination of cell viability. J. Gen. Microbiol. 107: 165–167.Google Scholar
  7. Keng, P.C., C.K.N. Li, and K.T. Wheeler. 1981. Characterization of the separation properties of the Beckman elutriator system. Cell Biophysics 3: 41–56.PubMedCrossRefGoogle Scholar
  8. Kerr, S.R. 1974. Theory of size distributions in ecological communities. J. Fish. Res. Bd. Can. 31: 1859–1862.CrossRefGoogle Scholar
  9. Kruth, H.S. 1982. Flow cytometry: Rapid biochemical analysis of single cells. Anal. Biochem. 125: 225–242.PubMedCrossRefGoogle Scholar
  10. Lorenzen, C.J. 1966. A method for the continuous measurement of in vivo chlorophyll concentration. Deep-Sea Res. 13: 223–227.Google Scholar
  11. Malone, T.C. 1980. Algal size. In The Physiological Ecology of Phytoplankton. I. Morris (ed.) pp. 433–463. London: Blackwell Publishers.Google Scholar
  12. Maloney, T.E., E.J. Donovan and E.L. Robinson, Jr. 1962. Determination of numbers and sizes of algal cells with an electronic particle counter. Phycologia 2: 1–8.CrossRefGoogle Scholar
  13. Margalef, R. 1963. Successions of populations. Advancing Frontiers of Science 2: 137–188.Google Scholar
  14. Melamed, M.R., P.F. Mullaney and M.L. Mendelson. 1979. Flow Cytometry and Sorting. Wiley, N.Y.Google Scholar
  15. Murphy, L.S. and E. Haugen. 1985. The distribution and abundance of phototrophic ultraplankton in the North Atlantic. Limnol. Oceanogr. 30: 47–58.CrossRefGoogle Scholar
  16. Olson, R.J. S.L. Frankel, S.W. Chisholm and H.M. Shapiro. 1983. An inexpensive flow cytometer for the analysis of fluorescence signals in phytoplankton: Chlorophyll and DNA distributions. J. Exp. Mar. Biol. Ecol. 68: 129–144.CrossRefGoogle Scholar
  17. Olson, R.J., D. Vaulot, S.W. Chisholm. Marine phytoplankton distributions measured using shipboard flow cytometry. Submitted to Deep-Sea Res.Google Scholar
  18. Patrick, C.W., T.J. Nilson, P.W. McFadden and R.H. Keller. 1984. Flow Cytometry and Cell Sorting. Laboratory Medicine 15: 740–745.Google Scholar
  19. Paau, A.S., J. Oro and J.R. Cowles. 1978. Application of flow cytometry to the study of algal cells and isolated chloroplasts. J Exp. Bot. 29: 1011–1020.CrossRefGoogle Scholar
  20. Parsons, T.R., K. Stephens and J.D.H. Strickland. 1961. On the chemical composition of eleven species of marine phytoplankters. J. Fish. Res. Bd. Canada 18: 1001–1016.CrossRefGoogle Scholar
  21. Peters, R.H. 1983. Ecological Implications of Body Size. Cambridge Univ. Press, Cambridge 329 pp.Google Scholar
  22. Piatt. T. and K. L. Denman. 1977. Organization in the pelagic ecosystem. Helgol. Wiss. Meeresunter. 30: 575–581.CrossRefGoogle Scholar
  23. Piatt, T. and K. L. Denman. 1978. The structure of pelagic marine ecosystems. Rapp. P.-V. Reun. Cons. Int. Explor. Mer 173: 60–65.Google Scholar
  24. Piatt, T. and W. Silvert. 1981. Ecology, physiology, allometry and dimensionality. J. Theoret. Biol. 93: 855–860.CrossRefGoogle Scholar
  25. Salzman, G.C., P.F. Mullaney, B.J. Price. 1979. Light scattering approaches to cell characterization. In Flow Cytometry and Cell Sorting, M.R. Melamed, P.F. Mullaney and M.L. Mendelson (eds.) John Wiley and Sons, N.Y. pp. 105–124.Google Scholar
  26. Salzman, G.C. 1982. Light scattering analysis of single cells. Iri N. Catsimpoolas (ed.), Cell Analysis, Vol. 1. Plenum Publ. Corp.Google Scholar
  27. Shapiro, H.M. 1985 Practical Flow Cytometry. Alan R. Liss, Inc., N.Y. 300 pp.Google Scholar
  28. Sheldon, R.W 1978. Sensing zone counters in the laboratory. Ln A Phytoplankton Manual, A. Sournia (ed.), Monogr. Ocean Methodol. 3. UNESCO.Google Scholar
  29. Sheldon, R.W. and T.R. Parsons. 1967. A continuous size spectrum for particulate matter in the sea. J. Fish. Res. Bd. Can. 24: 909–915.CrossRefGoogle Scholar
  30. Sheldon, R.W., A. Prakash and W.H. Sutcliffe, Jr. 1972. The size distribution of particles in the ocean. Limnol. Oceanogr. 17: 327–340.CrossRefGoogle Scholar
  31. Sheldon, R.W., A. Prakash and W.H. Sutcliffe, Jr. 1972. The size distribution of particles in the ocean. Limnol. Oceanogr. 17: 327–340.CrossRefGoogle Scholar
  32. Sieburth, J. McN, V. Smetacek and J. Lenz. 1979. Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 23: 1256–1263.CrossRefGoogle Scholar
  33. Silvert, W. and T. Piatt. 1978. Energy flux in the pelagic ecosystem: A time-dependent equation. Limnol. and Oceanogr. 23: 1248–1255.CrossRefGoogle Scholar
  34. Silvert, W. and T. Piatt. 1980. Dynamic energy flow model of the particle size distribution in pelagic ecosystem. In Evolution and Ecology of Zooplankton Communities. W.C. Kerfoot (ed.), pp. 754–763. Univ. Press of New England, Hanover, N.H.Google Scholar
  35. Spinrad, R.S. and C.M. Yentsch. 1984. The optical state of marine phytoplankton. Submitted Limnol. Oceanogr.Google Scholar
  36. Thomann, R.V. 1981. Equilibrium model of fate of micro-contaminants in diverse aquatic food chains. Can. J. Fish. Aquat. Sci. 38: 280–296.CrossRefGoogle Scholar
  37. Trask, B.J., G.J. Van den Engh and J.H.B.W. Elgershuizen. 1982. Analysis of phytoplankton by flow cytometry. Cytometry 2: 258–267.PubMedCrossRefGoogle Scholar
  38. Turpin, D.H. and P.J. Harrison. 1980. Cell size manipulation in natural marine planktonic diatom communities. Can. J. Fish. Aquat. Sci. 37: 1193–1195.CrossRefGoogle Scholar
  39. Van Dilla, M.A. and M.L. Mendelsohn. 1979. Introduction and resume of flow cytometry and sorting. In Flow Cytometry and Sorting, M.R. Melamed, P.F. Mullaney and H7l. Mendelson (eds.) Wiley and Sons, N.Y. pp. 11–37.Google Scholar
  40. Waterbury, J.B., S.W. Watson, R.R.L. Guillard and L.E. Brand. 1979. Wide-spread occurrence of unicellular, marine, planktonic cyano- bacterium. Nature, 277: 293–294.CrossRefGoogle Scholar
  41. Yentsch, C.M. and C.S. Yentsch. 1979. Fluorescence spectral signatures: The characterization of phytoplankton populations by the use of excitation and emission spectra. J. Mar. Res. 37: 471–483.Google Scholar
  42. Yentsch, C.M., F.M. Mague, P.K. Horan and K. Muirhead. 1983a. Flow cytometric DNA determinations on individual cells of the dino- flagellate Gonyaulax tamarensis var. excavata. J Exp. Mar. Biol. Ecol. 67: 175–183.CrossRefGoogle Scholar
  43. Yentsch, C.M., P.K. Horan, K. Muirhead, Q. Dortch, E. Haugen, L. Legendre, L.S. Murphy, M.J. Perry, D.A. Phinney, S.A. Pomponi, R.W. Spinrad, M. Wood, C.S. Yentsch and B.J. Zahuranec. 1983b. Flow cytometry and cell sorting: A technique for analysis and sorting of aquatic particles. Limnol. Oceanogr. 28: 1275–1280.CrossRefGoogle Scholar
  44. Yentsch, C.M., T.L. Cucci and D.A. Phinney. 1984. Flow cytometry and cell sorting: Problems and promises for biological ocean science research. In: 0. Holm-Hansen, L. Bolis and R. Giles (eds.), Marine Phytoplankton and Productivity. Springer-Verlag, Berlin, pp. 141–155.Google Scholar
  45. Yentsch, C.S. and D.A. Phinney. 1984. Observed changes in spectral signatures of natural phytoplankton populations: the influence of nutrient availability. In: 0. Holm-Hansen, L. Bolis and R. Giles (eds.), Marine Phytoplankton and Productivity. Springer-Verlag, Berlin, pp. 129–140.Google Scholar
  46. Yentsch, C.S. and D.A. Phinney. 1985. The use of fluorescence spectral signatures for studies of marine phytoplankton. In: A. Zirino (ed.), Mapping Strategies in Chemical Oceanography, Advances in Chemistry Series, No. 209. American Chemical Society, Washington, D.C., pp. 259–274.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • C. M. Yentsch
    • 1
  • T. L. Cucci
    • 1
  • D. A. Phinney
    • 1
  • J. A. Topinka
    • 1
  1. 1.Jane J. MacIsaac Flow Cytometer/Sorting FacilityBigelow Laboratory for Ocean SciencesW. Boothbay HarborUSA

Personalised recommendations