Skip to main content

Abstract

In the past five years since their discovery, enhancer elements have been studied intensively in a large number of laboratories (see refs. 1,2). The prototype enhancer element, the 72-bp repeat of SV40, was first shown to be an essential set of sequences required for the efficient transcription of SV40 early genes [3–5]. Although there is some variability in the sequences that we have come to know as enhancers, in general their definition involves the following common properties: They are short sets of nucleotides (50–100 bp in length), often repeated in tandem, which work in concert with the other promoter elements to increase the efficiency of transcription of an associated gene as much as 100–1000 fold. A remarkable feature of enhancer elements is their relative position- and orientation-independence. For example, the SV40 72-bp repeat element will activate transcription from a promoter when located in either orientation, 5′ or 3′ to the cap site, and several kilobases away. Enhancer elements can generally act on heterologous genes as well as on the natural promoter with which they are associated [6,7]. Finally, a number of enhancer elements show tissue or species specificity, which contributes significantly to the host range of the virus with which they are associated [8–10]. In this review, we discuss the possibility that enhancer specificity not only contributes to the target tissue in which the virus is active, but also frequently dictates the disease potential of the viral agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Khoury G, Gruss P (1983) Enhancer elements. Cell 33: 313–314

    Article  CAS  PubMed  Google Scholar 

  2. Gluzman Y, Shenk T (eds) (1983) Enhancers and Eukaryotic Gene Expression— Current Communications in Molecular Biology. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  3. Benoist C, Chambon P (1981) In vivo sequence requirements of the SV40 early promoter region. Nature 290: 304–310

    Article  CAS  PubMed  Google Scholar 

  4. Gruss P, Dhar R, Khoury G (1981) Simian virus 40 tandem repeated sequences as an element of the early promoter. Proc Natl Acad Sci USA 78: 943–947

    Article  CAS  PubMed  Google Scholar 

  5. Fromm M, Berg P (1982) Deletion mapping of DNA regions required for SV40 early region promoter function in vivo. J Mol and Appl Genet 1: 457–481

    CAS  Google Scholar 

  6. de Villiers J, Schaffner W (1981) A small segment of polyoma virus DNA enhances the expression of a cloned ß-globin gene over a distance of 1400 base pairs. Nucleic Acids Res 9: 6251–6254

    Article  PubMed Central  PubMed  Google Scholar 

  7. Levinson B, Khoury G, Vande Woude G, Gruss P (1982) Activation of SV40 genome by 72-base pair tandem repeats of Moloney sarcoma virus. Nature 295: 568–572

    Article  CAS  PubMed  Google Scholar 

  8. Laimins LA, Khoury G, Gorman C, Howard B, Gruss P (1982) Host-specific activation of gene expression by 72 base pair repeats of simian virus 40 and Moloney murine leukemia virus. Proc Natl Acad Sei USA 79: 6453–6457

    Article  CAS  Google Scholar 

  9. de Villiers J, Olson L, Tyndall C, Schaffner W (1982) Transcriptional ‘enhancers’ from SV40 and polyoma virus show a cell type preference. Nucleic Acids Res 10: 7965–7976

    Article  PubMed Central  PubMed  Google Scholar 

  10. Kriegler M, Botchan M (1983) Enhanced transformation by a simian virus 40 recombinant virus containing a Harvey murine sarcoma virus long terminal repeat. Mol Cell Biol 3: 325–339

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Tooze J (ed) (1981) DNA Tumor Viruses: Molecular Biology of Tumor Viruses, 2nd Ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  12. Katinka M, Yaniv M, Vasseur M, Blangy D (1980) Expression of polyoma early functions in mouse embryonal carcinoma cells depends on sequence rearrangements in the beginning of the late region. Cell 20: 393–399

    Article  CAS  PubMed  Google Scholar 

  13. Fujimura FK, Deininger PL, Friedmann T, Linney E (1981) Mutation near the polyoma DNA replication origin permits productive infection of F9 embryonal carcinoma cells. Cell 23: 809–814

    Article  CAS  PubMed  Google Scholar 

  14. Sekikawa K, Levine A (1981) Isolation and characterization of polyoma host range mutants that replicate in nullipotential embryonal carcinoma cells. Proc Natl Acad Sei USA 78: 1100–1104

    Article  CAS  Google Scholar 

  15. Fujimura FK, Linney E (1982) Polyoma mutants that productively infect F9 embryonal carcinoma cells do not rescue wild-type polyoma in F9 cells. Proc Natl Acad Sei USA 79: 1479–1483

    Article  CAS  Google Scholar 

  16. Graessman A, Graessman M, Mueller C (1981) Regulation of SV40 gene expres¬sion. In Klein G, Weinhouse S (ed) Advances in Cancer Research. Academic Press, New York, vol 35, pp 111–146

    Google Scholar 

  17. de Villiers J, Schaffner W, Tyndall C, Lupton S, Kamen R (1984) Polyoma virus DNA replication requires an enhancer. Nature 312: 242–246

    Article  PubMed  Google Scholar 

  18. Veldman GM, Lupton S, Kamen R (1985) Polyomavirus enhancer contains mul¬tiple redundant sequence elements that activate both DNA replication and gene expression. Mol Cell Biol 5: 649–658

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Kenney S, Natarajan V, Strike D, Khoury G, Salzman NP (1984) JC virus enhancer-promoter active in the brain cells. Science 226: 1337–1339

    Article  CAS  PubMed  Google Scholar 

  20. Major EO, Miller AE, Mourrain P, Traub RG, De Widt E, Sever J (1985) Establishment of a line of human fetal glial cells that supports JC virus multiplication. Proc Natl Acad Sei USA 82: 1257–1261

    Article  CAS  Google Scholar 

  21. Li JJ, Kelly TJ (1985) Simian virus 40 DNA replication in vitro: Specificity of initiation and evidence for bidirectional replication. Mol Cell Biol 5: 1238–1246

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Bergsma DJ, Olive DM, Hartzell SW, Subramanian KN (1982) Territorial limits and functional anatomy of the simian virus 40 replication origin. Proc Natl Acad Sei USA 79: 381–385

    Article  CAS  Google Scholar 

  23. Chatis P, Holland C, Hartley J, Rowe W, Hopkins N (1983) Role of the 3’ end of the genome in determining the disease specificity of Friend and Moloney murine leukemia viruses. Proc Natl Acad Sci USA 80: 4408–4411

    Article  CAS  PubMed  Google Scholar 

  24. Chatis P, Holland CA, Silver JE, Frederickson TN, Hopkins N, Hartley JW (1984) A 3’ end fragment encompassing the transcriptional enhancers of non- defective Friend virus confers erythroleukemogenicity on Moloney leukemia virus. J Virol 52: 248–254

    CAS  PubMed Central  PubMed  Google Scholar 

  25. DesGroseillers L, Rassart E, Jolicoeur P (1983) Thymotropism of murine leukemia virus is conferred by its long terminal repeat. Proc Natl Acad Sci USA 80: 4203–4207

    Article  CAS  PubMed  Google Scholar 

  26. DesGroseillers L, Jolicoeur P (1984) Mapping the viral sequences conferring leu- kemogenicity and disease specificity in Moloney and amphotropic murine leu¬kemia viruses. J Virol 52: 448–456

    CAS  PubMed Central  PubMed  Google Scholar 

  27. DesGroseillers L, Villemur R, Jolicoeur P (1983) The high leukemogenic potential of Gross passage A leukemia virus maps in the region of the genome corresponding to the long terminal repeat and to the 3’ end of env. J Virol 47: 24–32

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Robinson HL, Blais BM, Tsichlis PN, Coffin JM (l982) At least two regions of the viral genome determine the oncogenic potential of avain leukosis viruses. Proc Natl Acad Sci USA 79: 1225–1229

    Article  Google Scholar 

  29. Luciw PA, Bishop JM, Varmus HE, Capecchi MR (1983) Location and function of retroviral and SV40 sequences that enhance biochemical transformation after microinjection of DNA. Cell 33: 705–716

    Article  CAS  PubMed  Google Scholar 

  30. Laimins LA, Tsichlis P, Khoury G (1984) Multiple enhancer domains in the 3’ terminus of the Prague strain of Rous sarcoma virus. Nucleic Acids Res 12: 6427–6442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Weber F, Schaffner W (1985) Enhancer activity correlates with the oncogenic potential of avian retroviruses. EMBO J 4: 949–956

    CAS  PubMed  Google Scholar 

  32. Sodroski JG, Rosen CA, Haseltine WA (1984) Trans-acting transcriptional ac-tivation of the long terminal repeat of human T lymphotrophic viruses in infected cells. Science 225: 381–385

    Article  CAS  PubMed  Google Scholar 

  33. Josephs SF, Wong-Staal F, Manzari V, Gallo RC, Sodroski JG, Trus MD, Perkins D, Patarca R, Haseltine WA (1984) Long terminal repeat structure of an American isolate of type I human T-cell leukemia virus. Virology 139: 340–345

    Article  CAS  PubMed  Google Scholar 

  34. Rosen C, Sodorski J, Kettman R, Burny A, Haseltine W (1985) Trans-activation of the bovine leukemia virus long terminal repeat in BLV-infected cells. Science 227: 320–323

    Article  CAS  PubMed  Google Scholar 

  35. Sodroski JG, Rosen C, Wong-Staal F, Salahuddin S, Popovic M, Arya S, Gallo R, Haseltine W (1985) Trans-acting transcriptional regulation of human T-cell leukemia virus type III long terminal repeat. Science 227: 171–173

    Article  CAS  PubMed  Google Scholar 

  36. Derse D, Caradonna S, Casey J (1985) Bovine leukemia virus long terminal repeat: A cell-type specific promoter. Science 227: 317-320

    Google Scholar 

  37. Brinster R, Chen H, Messing A, Van Dyke T, Levine A, Palmiter R (1984) Transgenic mice harboring SV40 T-antigen genes develop characteristic tumors. Cell 37: 367–379

    Article  CAS  PubMed  Google Scholar 

  38. Hanahan D (1985) Heritable formation of pancreatic ß-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315: 115–122

    Article  CAS  PubMed  Google Scholar 

  39. Stewart T, Pattengale P, Leder P (1984) Spontaneous mammary adenocarcinomas in transgenic spontaneous mice that carry and express MTV/myc fusion genes. Cell 38: 627–637

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brady, J., Feigenbaum, L., Khoury, G. (1986). Viral Enhancer Elements. In: Notkins, A.L., Oldstone, M.B.A. (eds) Concepts in Viral Pathogenesis II. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4958-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4958-0_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9375-0

  • Online ISBN: 978-1-4612-4958-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics