Skip to main content

Mapping Neutralization Domains of Viruses

  • Chapter
Book cover Concepts in Viral Pathogenesis II

Abstract

Animal viruses enter the host cell by attachment to a virus-specific host cell receptor followed by a chain of events that allows the particle to pass through the plasma membrane. This pathway may involve either the direct fusion of the viral envelope with the cytoplasmic membrane (paramyxoviruses) or internalization via endocytotic vesicles, called endosomes (togaviruses, myxoviruses, possibly also the picornaviruses). Available evidence suggests that the virion contained in the endosomes undergoes acid-induced structural rearrangements that lead to penetration (see ref. 1 for a review).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. White J, Kielian M, Helenius A (1983) Membrane fusion proteins of enveloped animal viruses. Rev Biophys 16:151–195.

    Article  CAS  Google Scholar 

  2. Mandel B (1982) Interaction of viruses with neutralizing antibodies. In Fraenkel- Conrat, H, Wagner, RR (eds) Comprehensive Virology. Plenum Press, New York, pp 37–121.

    Google Scholar 

  3. Wimmer E, Jameson BA, Emini EA (1984) Poliovirus antigenic sites and vaccines. Nature 308:19.

    CAS  Google Scholar 

  4. Emini EA, Jameson BA, Wimmer E (1984) The identification of multiple neutralization antigenic sites on poliovirus type 1 and the priming of immune response with synthetic peptides. In Chanock R, Lerner R (eds) Modern Approaches to Vaccines. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 65–75.

    Google Scholar 

  5. Fields BN (1984) Viral genes and tissue tropism. In Notkins AL, Oldstone MBA (eds) Concepts in Viral Pathogenesis. Springer-Verlag, New York, pp 102–108.

    Chapter  Google Scholar 

  6. Diamond DC, Jameson BA, Bonin J, Kohara M, Abe S, Itoh H, Komatsu T, Arita M, Kuge S, Osterhaus ADME, Crainic R, Nomoto A, Wimmer E (1985) Antigenic variation and resistance to neutralization in poliovirus type 1. Science 229:1090–1093.

    Article  CAS  PubMed  Google Scholar 

  7. Lerner RA (1982) Tapping the immunological repertoire to produce antibodies at predetermined specificity. Nature 299:592–596.

    Article  CAS  Google Scholar 

  8. Kitamura N, Semler BL, Rothberg PG, Larsen GR, Adler CJ, Dorner AJ, Emini EA, Hanecak R, Lee JJ, van der Werf S, Anderson CW, Wimmer E (1981) Pri-mary structure, gene organization and polypeptide expression of poliovirus RNA. Nature 291:547–553.

    Article  CAS  PubMed  Google Scholar 

  9. Rossman MG, Arnold E, Erichson JW, Frankenberger EA, Griffith JP, Hecht J-J, Johnson J, Kamer G, Luo M, Mosser AG, Rueckert RR, Sherry B, Vriend G (1985) Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317:145–153.

    Article  Google Scholar 

  10. Hogle JM, Chow M, Filman DJ (1985) Three-dimensional structure of poliovirus at 2.9 angstrom resolution. Science 229:1358–1363.

    Article  CAS  PubMed  Google Scholar 

  11. Wild TF, Burroughs JN, Brown F (1969) Surface structure of foot-and-mouth disease virus. J Gen Virol 4:313–320.

    Article  CAS  PubMed  Google Scholar 

  12. Laporte J, Grosclaude J, Wantighem J, Bernard S, Rouze P (1973) Neutralisation en culture cellulaire du pouvoir infectieux du virus de la fièvre aphteuse pardés serums provenant de porcs immunisés à paidé d’une proteine virale purifiée. C R Séances Acad Sei [III] 276:3399–3401.

    CAS  Google Scholar 

  13. Rueckert RR (1976) On the structure and morphogenesis of picornaviruses. In Fraenkel-Conrat H, Wagner RR (eds) Comprehensive Virology, vol 6. Plenum Press, New York, pp 131–213.

    Google Scholar 

  14. Beatrice ST, Katze MG, Zajac BA, Crowell RL (1980) Induction of neutralizing antibodies by the coxsackie B3 virion polypeptide, VP2. Virology 104:426–438.

    Article  CAS  PubMed  Google Scholar 

  15. Blondel B, Crainic R, Horodniceanu F (1982) Le polypeptide structural VP1 du poliovirus type 1 induit des anticorps neutralisants. C R Séances Acad Sei 294:91–94.

    CAS  Google Scholar 

  16. Chow M, Baltimore D (1982) Isolated poliovirus capsid protein VP1 induces a neutralizing response in rats. Proc Natl Acad Sei USA 79:7518–7521.

    Article  CAS  Google Scholar 

  17. van der Marel P, Hazendank TG, Henneeke MAC, van Wezel AL (1983) Induction of neutralizing antibodies by poliovirus capsid polypeptides VP1, VP2 and VP3. Vaccine 1:17–22.

    Article  PubMed  Google Scholar 

  18. Dernick R, Heukeshoven Y, Hilbrig M (1983) Induction of neutralizing antibodies by the three structural poliovirus polypeptides. Virology 130:243–246.

    Article  CAS  PubMed  Google Scholar 

  19. Emini EA, Dorner AJ, Dorner LF, Jameson BA, Wimmer E (1983) Identification of a poliovirus neutralization epitope through use of neutralizing anti-serum raised against a purified viral structural protein. Virology 124:144–151.

    Article  CAS  PubMed  Google Scholar 

  20. Emini EA, Jameson BA, Wimmer E (1985) Antigenic structure of poliovirus. In Neurath AR, van Regenmortel MHV (eds) Immunochemistry of Viruses—the Basis of Serodiagnosis and Vaccines. Elsevier Biomedical Press, Holland, pp. 281–294.

    Google Scholar 

  21. Blondel B, Akacem O, Crainic R, Corillin P, Horodniceanu F (1983) Detection by monoclonal antibodies of an antigenic determinant critical for poliovirus neutralization present on VP1 and on heat-inactivated virions. Virology 126:707–710.

    Article  CAS  PubMed  Google Scholar 

  22. Kupper H, Keller W, Kurz C, Forss S, Schaller H, Franze R, Strohmaier K, Marquardt O, Zaslasky VG, Hofschneider PH (1981) Cloning of cDNA of major antigen of foot and mouth disease virus and expression in E. coli. Nature 289:555–559.

    Article  CAS  PubMed  Google Scholar 

  23. Kleid DG, Yansura D, Small B, Doubenko D, Moore DM, Grubman MJ, McKercher PD, Morgan DO, Robertson BH, Bachrach HL (1981) Cloned viral protein vaccine for foot-and-mouth disease: Responses in cattle and swine. Science 214:1125–1129.

    Article  CAS  PubMed  Google Scholar 

  24. Boothroyd JC, Highfield PE, Cross GAM, Rowlands DJ, Lowe PA, Brown F, Harris TJR (1981) Molecular cloning of foot and mouth disease virus genome and nucleotide sequences in the structural protein genes. Nature 290:800–802.

    Article  CAS  PubMed  Google Scholar 

  25. Strohmaier K, Franze R, Adam KH (1982) Location and characterization of the antigenic portion of the FMDV immunizing protein. J Gen Virol 59:295–306.

    Article  CAS  PubMed  Google Scholar 

  26. Kurz C, Forss S, Kupper H, Strohmaier K, Schaller H (1981) Nucleotide sequence and corresponding amino acid sequence of the gene for the major antigen of foot and mouth disease virus. Nucleic Acids Res 9:1919–1930.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Boothroyd JC, Harris TJR, Rowland DJ, Lowe PA (1982) The nucleotide sequence of cDNA coding for the structural proteins of foot-and-mouth disease virus. Gene 17:153–161.

    Article  CAS  PubMed  Google Scholar 

  28. Weddel GN, Yansura DG, Doubenko DJ, Hartlin ME, Grubman MJ, Moore DM, Kleid DG (1985) Sequence variation in the gene for the immunogenic capsid protein VP1 of foot-and-mouth disease virus type A. Proc Natl Acad Sci USA 82:2618–2622.

    Article  Google Scholar 

  29. Bittle JL, Houghten RA, Alexander H, Shinnick TM, Suteliffe YG, Lerner RA, Rowlands DJ, Brown F (1982) Protection against foot-and-mouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence. Nature 298:30–33.

    Article  CAS  PubMed  Google Scholar 

  30. Pfaff E, Mussgay M, Bohm HO, Schulz GE, Schaller H (1982) Antibodies against a preselected peptide recognize and neutralize foot-and-mouth disease virus. EMBO J 1:869–874.

    CAS  PubMed  Google Scholar 

  31. Rowlands DJ, Clarke BE, Carroll AR, Brown F, Nicholson BH, Bittle JL, Houghten RA, Lerner RA (1983) The chemical basis for variation in the major antigenic site eliciting neutralizing antibodies in foot-and-mouth disease. Nature 306:694–697.

    Article  CAS  PubMed  Google Scholar 

  32. Emini EA, Jameson BA, Lewis AJ, Larsen GR, Wimmer E (1982) Poliovirus neutralization epitopes: Analysis and localization with neutralizing monoclonal antibodies. J Virol 43:997–1005.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Toyoda H, Kohara M, Kataoka Y, Suganuma T, Omata T, Imura N, Nomoto A (1984) The complete nucleotide sequence of all three poliovirus serotype genomes (Sabin): Implication for the genetic relationship, gene function and antigenic determinants. J Mol Biol 174:561–585.

    Article  CAS  PubMed  Google Scholar 

  34. Emini EA, Jameson BA, Wimmer E (1983) Priming for and induction of anti-poliovirus neutralizing antibodies by synthetic peptides. Nature 304:699–703.

    Article  CAS  PubMed  Google Scholar 

  35. Crainic R, Coullin P, Blondel B, Caban N, Bone A, Horodniceanu F (1983) Natural variation of poliovirus neutralization epitopes. Infect Immun 41:1217–1225.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Emini EA, Kao S-Y, Lewis AJ, Crainie R, Wimmer E (1983) The functional basis of polio virus neutralization determined with monospecific neutralizing antibodies. J Virol 46:466–474.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Minor PD, Schild GC, Bootman J, Evans DMA, Ferguson M, Reeve P, Spitz M, Stan way G, Cann AJ, Hauptmann R, Clarke LD, Mountford RC, Almond JW (1983) Location and primary structure of the antigenic site for poliovirus neutralization. Nature 301:674–679.

    Article  CAS  PubMed  Google Scholar 

  38. Wychowski C, van der Werf S, Siffert O, Crainie R, Bruneau P, Girard M (1983) A poliovirus type 1 neutralization epitope is located within amino acid residues 93 to 104 of viral capsid polypeptide VP1. EMBO J 2:2019–2024.

    CAS  PubMed  Google Scholar 

  39. van der Werf S, Wychowski C, Bruneau P, Blondel B, Crainie R, Horadniceanu F, Girard M (1983) Localization of a poliovirus type 1 neutralization epitope in a viral capsid polypeptide VP1. Proc Natl Acad Sei USA 80:5080–5084.

    Article  Google Scholar 

  40. Evans DMA, Minor PD, Schild, GS Almond JW (1983) Critical rate of an eight- amino acid sequence of VP1 in neutralization of poliovirus type 3. Nature 304:452–462.

    Article  Google Scholar 

  41. Crainie R, Blondel B, Horaud F (1984) Antigenic variation of poliovirus studied by means of monoclonal antibodies. Rev Infect Dis 6:S535–S539.

    Article  Google Scholar 

  42. van der Werf S (1984) Clonage moleculaire du poliovirus type 1 et expression de ses proteines de capside chez Escherichia coli: Identification d’un epitode de neutralization. Thèse De Doctorat, D’Etat Universität, Paris 7.

    Google Scholar 

  43. Enger-Valk BE, Jore J, Pouwels PH, van der Marel P, van Wezel TL (1984) Expression in Escherichi coli of capsid protein VP1 of poliovirus type 1. In Chanock RM, Lerner RA (eds) Modem Approaches to Vaccines. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 173–178.

    Google Scholar 

  44. Blondel B, Crainie R, Fichot O, Onfraise G, Candrea A, Diamond D, Girard M, Horaud F (1986) Mutations conferring resistance of neutralization with monoclonal antibodies in type 1 poliovirus can be located outside or inside the antibody- binding site. J Virol 57:81–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Ferguson M, Evans DMA, Magrath DI, Minor PD, Almond JW, Schild GC (1985) Introduction by synthetic peptides of broadly reactive, type-specific neutralizing antibody to poliovirus type 3. Virology 143:505–515.

    Article  CAS  PubMed  Google Scholar 

  46. Emini EA, Jameson BA, Wimmer E (1984) Peptide induction of poliovirus neutralizing antibodies: Identification of a new antigenic site on coat protein VP2. J Virol 52:719–721.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Chow M, Yabrov R, Bittle J, Hogle J, Baltimore D (1985) Synthetic peptides from four separate regions of the poliovirus type 1 capsid protein VP1 induce neutralizing antibodies. Proc Natl Acad Sei USA 82:910–914.

    Article  CAS  Google Scholar 

  48. Francis MJ, Fry CM, Rowlands DJ, Brown F, Bittle JL, Hough ten RA, Lerner RA (1985) Priming with peptides of foot-and-mouth disease virus. In Lerner RA, Chanock RM, Brown F (eds) Vaccines 49. Cold Spring Harbor Press, New York, pp 203–210.

    Google Scholar 

  49. Robinson IK, Harrison SC (1982) Structure of the expanded state of tomato bushy stunt virus. Nature 297:563–568.

    Article  CAS  Google Scholar 

  50. Hughes JV, Stanton LW, Tomassini JE, Long WJ, Scolnick EM (1984) Neutralizing monoclonal antibodies to hepatitis A virus: Partial localization of a neutralizing antigenic site. J Virol 52:465–473.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Emini EA, Hughes JV, Perlow DS, Boger J (1985) Induction of hepatitis A virus- neutralizing antibody by a virus-specific synthetic peptide. J Virol 55:836–839.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Sherry B, Rueckert RR (1985) Evidence for at least two dominant neutralization antigens on human rhinovirus 14. J Virol 53:137–143.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Sherry B, Mosser AG, Colonno RJ, Rueckert RR (1986) Use of monoclonal antibodies to identify four neutralization immunogens on a common cold Picornavirus, human rhinovirus 14. J Virol 57:246–257.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Jameson BA, Bonin J, Wimmer E, Kew OM (1986) Natural variants of the Sabin type 1 vaccine strain of poliovirus and correlation with a poliovirus neutralization site. Virology 143:337–341.

    Article  Google Scholar 

  55. Crowell RL, Landau BJ (1983) Receptors in the initiation of Picornavirus infections. In Fraenkel-Conrat H, Wagner RR (eds) Comprehensive Virology. Plenum Press, New York, pp 1–42.

    Google Scholar 

  56. Argos P, Kamer G, Nickiin MJH, Wimmer E (1984) Similarity in gene organization and homology between proteins at animal picornaviruses and a plant comovirus suggest common ancestry of these virus families. Nuceic Acids Res 12:7251–7276.

    Article  CAS  Google Scholar 

  57. Cherry JD, Donald MD, Nelson DB (1966) Enterovirus infections: Their epidemiology and pathogenesis. Clin Pediatr 5:659–664.

    Article  CAS  Google Scholar 

  58. Brown F, Wild F (1974) Variation in the coxsackievirus type B5 and its possible role in the etiology of swine vesicular disease. Intervirol 3:125–128.

    Article  CAS  Google Scholar 

  59. Icenogle J, Shiwen H, Duke G, Gilbert S, Rueckert R, Anderegg J (1983) Neutralization of poliovirus by a monoclonal antibody: Kinetics and stoichiometry. Virology 127:412–425.

    Article  CAS  PubMed  Google Scholar 

  60. Emini EA, Ostapchuk P, Wimmer E (1983) Bivalent attachment of antibody onto poliovirus leads to conformational alteration and neutralization. J Virol 48:547–550.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wimmer, E., Emini, E.A., Diamond, D.C. (1986). Mapping Neutralization Domains of Viruses. In: Notkins, A.L., Oldstone, M.B.A. (eds) Concepts in Viral Pathogenesis II. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4958-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4958-0_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9375-0

  • Online ISBN: 978-1-4612-4958-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics