Skip to main content

Oncogenes, Growth Factors, and Receptors

  • Chapter
Concepts in Viral Pathogenesis II

Abstract

Acutely transforming retroviruses are among the most carcinogenic agents known. Because of this property, they have been studied extensively [1]. The model systems provided by these viruses have proven to be valuable sources of information not only on the mechanisms by which normal cells become malignant, but also on how they grow and differentiate. The acutely transforming retroviruses contain genes, termed oncogenes, that are responsible for causing tumors in animals and inducing the malignant phenotype in cultured cells. Viral oncogenes have counterparts in normal cells, termed proto-oncogenes [2], and detailed analyses of the corresponding viral and cellular sequences have revealed that viral oncogenes arose as a result of the acquisition (by as yet ill-defined recombinational events) of portions of proto-oncogenes by replication-competent retroviruses [2]. These findings have implied the existence of a subset of normal cellular genes with oncogenic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weiss RA, Teich N, Varmus H (1982) Molecular biology of tumor viruses. In Coffin J (ed) RNA Tumor Viruses, 2nd Ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  2. Bishop JM (1983) Cellular oncogenes and retroviruses. Annu Rev Biochem 52:301–354.

    Article  CAS  PubMed  Google Scholar 

  3. Wigler M (1984) Genes in S. cerevisiae encoding proteins with domains homol-ogous to the mammalian ras proteins. Cell 36:607–612.

    Article  PubMed  Google Scholar 

  4. Dhar R, Neito A, Koller R, DeFeo-Jones D, Scolnick EM (1984) Nucleotide sequence of two rasH-related genes isolated from the yeast Saccharomyces cerevisiae. Nucleic Acids Res 12:3611–3618.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Bishop JM (1985) Viral oncogenes. Cell 42:23–38.

    Article  CAS  PubMed  Google Scholar 

  6. Weinberg RA (1985) The action of oncogenes in the cytoplasm and nucleus. Science 230:770–776.

    Article  CAS  PubMed  Google Scholar 

  7. Gilman AG (1984) G proteins and dual control of adenvlate cyclase. Cell 36:577–579.

    Article  CAS  PubMed  Google Scholar 

  8. Miller DL, Hachmann J, Weissbach H (1971) The reactions of the sulfhydryl groups on the elongation factors Tu and Ts. Arch Biochem Biophys 144:115–121.

    Article  CAS  PubMed  Google Scholar 

  9. Carlier M-E (1982) Guanosine-5’-triphosphate hydrolysis and tubulin polymeri-zation. Mol Cell Biochem 47:97–113.

    Article  CAS  PubMed  Google Scholar 

  10. James R, Bradshaw RA (1984) Polypeptide growth factors. Annu Rev Biochem 53:259–292.

    Article  CAS  PubMed  Google Scholar 

  11. Hunter T, Cooper J A (1985) Protein-tyrosine kinases. Annu Rev Biochem 54:897–930.

    Article  CAS  PubMed  Google Scholar 

  12. Doolittle RF, Hunkapiller MV, Hood LE, Devare SG, Robbins KC, Aaronson SA, Antoniades HN (1983) Simian sarcoma virus one gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor. Science 221:275–277.

    Article  CAS  PubMed  Google Scholar 

  13. Waterfield MD, Scrace GT, Whittle N, Stroobant P, Johnsson A, Wasteson A, Westermark B, Heldin CH, Huang JS, Deuel TF (1983). Platelet-derived growth factor is structurally related to the putative transforming protein p28s/s of simian sarcoma virus. Nature 304:35–39.

    Article  CAS  PubMed  Google Scholar 

  14. Robbins KC, Antoniades, HN, Devare SG, Hunkapiller MV, Aaronson SA (1983) Structural and immunological similarities between simian sarcoma virus gene product(s) and human platelet-derived growth factor. Nature 305:605–608.

    Article  CAS  PubMed  Google Scholar 

  15. Leal F, Williams LT, Robbins KC, Aaronson SA (1985) Evidence that the v-sis gene product transforms by interaction with the receptor for platelet-derived growth factor. Science 230:327–330.

    Article  CAS  PubMed  Google Scholar 

  16. Stiles CD (1983) The molecular biology of platelet-derived growth factor. Cell 33:653–655.

    Article  CAS  PubMed  Google Scholar 

  17. Igarashi H, Gazit A, Chiu I-M, Srinivasan A, Yaniv A, Tronick SR, Robbins KC, Aaronson SA (1985) Normal human sis/PDGF-2 gene expression induces cellular transformation. In Feramisco J, Ozanne B, Stiles C (eds) Cancer Cells, Vol 3: Growth Factors and Transformation, Cold Spring Harbor Laboratories, Cold Spring Harbor, New York, pp 159–166.

    Google Scholar 

  18. Eva A, Robbins KC, Andersen PR, Srinivasan A, Tronick SR, Reddy EP, Ellmore NW, Galen AT, Lautenberger JA, Papas TS, Westin EH, Wong-Staal F, Gallo RC, Aaronson SA (1982) Cellular genes analogous to retroviral one genes are transcribed in human tumor cells. Nature 295:116–119.

    Article  CAS  PubMed  Google Scholar 

  19. Downward J, Yarden Y, Mayes E, Scrace G, Totty N, Stockwell P, Ullrich A, Schiessinger J, Waterfield MD (1984) Close similarity of epidermal growth factor receptor and v-erbB oncogene protein sequences. Nature 307:521–527.

    Article  CAS  PubMed  Google Scholar 

  20. Sherr CJ, Rettenmier CW, Sacca R, Roussel MF, Look AT, Stanley ER (1985) The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell 41:665–676.

    Article  CAS  PubMed  Google Scholar 

  21. Ullrich A, Bell JR, Chen EY, Herrera R, Petruzzelli LM, Dull TJ, Gray A, Cous- sens L, Liao YC, Tsubokawa M, et al. (1985) Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313:756–761.

    Article  CAS  PubMed  Google Scholar 

  22. Neckameyer WS, Wang LH (1985) Nucleotide sequence of avian sarcoma virus UR2 and comparison of its transforming gene with other members of the tyrosine protein kinase oncogene family. J. Virol 53:879–884.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Schechter AL, Stern DF, Vaidyanathan L, Decker SJ, Drebin JA, Green MI, Weinberg RA (1984) The neu oncogene: An er&B-related gene encoding a 185,000- Mr tumour antigen. Nature 312:513–516.

    Article  CAS  PubMed  Google Scholar 

  24. King CR, Kraus MH, Aaronson SA (1985) Amplification of a novel v-er&B-related gene in a human mammary carcinoma. Science 229:974–976.

    Article  CAS  PubMed  Google Scholar 

  25. Semba K, Kamata N, Toyoshima K, Yamamoto T (1985) A v-er&B-related pro- tooncogene, c-erbB-2, is distinct from the c-er&B-l/epidermal growth factor-receptor gene and is amplified in a human salivary gland adenocarcinoma. Proc Natl Acad Sei USA 82:6497–6501.

    Article  CAS  Google Scholar 

  26. Coussens LC, Yang-Feng TL, Liao Y-C, Chen E, Gray A, McGrath J, Seeburg PH, Libermann KTA, Schlessinger J, Francke U, LeVinson A, Ullrich A (1985) Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 230:1132–1139.

    Article  CAS  PubMed  Google Scholar 

  27. Shepherd GM (1985) Olfactory transduction: Welcome whiff of biochemistry. Nature 316:214–215.

    Article  CAS  PubMed  Google Scholar 

  28. Greenberg ME, Ziff EB (1984) Stimulation of 3T3 cells induces transcription of c-fos proto-oncogene. Nature 311:433–438.

    Article  CAS  PubMed  Google Scholar 

  29. Kelly K, Cochran BH, Stiles CD, Leder P (1983) Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 35:603–610.

    Article  CAS  PubMed  Google Scholar 

  30. Pierce JH, Di Fiore PP, Aaronson SA, Potter M, Pumphrey J, Scott A, Ihle JN (1985) Neoplastic transformation of mast cells by Abelson-MuLV: Abrogation of IL-3 dependence by a nonautocrine mechanism. Cell 41:685–693.

    Article  CAS  PubMed  Google Scholar 

  31. Cook WD, Metealf D, Nicola NA, Burgess AW, Walker F (1985) Malignant transformation of a growth factor-dependent myeloid cell line by Abelson virus without evidence of an autocrine mechanism. Cell 41:677–683.

    Article  CAS  PubMed  Google Scholar 

  32. Rapp UR, Cleveland JL, Brightman K, Scott A, Ihle JN (1985) Abrogation of IL-3 and IL-2 dependence by recombinant murine retroviruses expressing v-myc oncogenes. Nature 317:434–438.

    Article  CAS  PubMed  Google Scholar 

  33. Sporn MB, Roberts AB (1985) Autocrine growth factors and cancer. Nature 313: 745–747.

    Article  CAS  PubMed  Google Scholar 

  34. Adkins B, Leutz A, Graf T (1984) Autocrine growth induced by srorelated on-cogenes in transformed chicken myeloid cells. Cell 39:439–445.

    Article  CAS  PubMed  Google Scholar 

  35. Weissman B, Aaronson SA (1985) Members of the sre and ras oncogene families supplant the EGF requirement of BALB/MK-2 keratinocytes and induce distinct alterations in their terminal differentiation program. Mol Cell Biol 5:3386–3396.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Varmus HE (1984) The molecular genetics of cellular oncogenes. Annu Rev Genet 18:553–612.

    Article  CAS  PubMed  Google Scholar 

  37. Shtivelman E, Lifshitz B, Gale RP, Canaani E (1985) Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature 315:550–554.

    Article  CAS  PubMed  Google Scholar 

  38. Stam K, Heisterkamp N, Grosveld G, de Klein A, Verma RS, Coleman M, Dosik H, Groffen J (1985) Evidence of a new chimeric bcr/c-abl mRNA in patients with chronic myelocytic leukemia and the Philadelphia chromosome. N Eng J Med 313:1429–1433.

    Article  CAS  Google Scholar 

  39. Rhim JS, Jay G, Arnstein P, Price FM, Sanford KK, Aaronson SA (1985) Neo-plastic transformation of human epidermal keratinocytes by AD 12-SV40 and Kirsten sarcoma viruses. Science 227:1250–1252.

    Article  CAS  PubMed  Google Scholar 

  40. Heldin C-H, Westermark B (1984) Growth factors: Mechanisms of action and relation to oncogenes. Cell 37:9–20.

    Article  CAS  PubMed  Google Scholar 

  41. Johnsson A, Heldin C-H, Wasteson Ä, Westermark B, Deuel TF, Huang HS, Seeburg PH, Gray A, Ullrich A, Scrace G, Stroobant P, Waterfield MD (1984) The c-sis gene encodes a precursor of the B chain of platelet derived growth factor. EMBO J 3:921–928.

    CAS  PubMed  Google Scholar 

  42. Josephs SF, Guo C, Ratner L, Wong-Staal F (1984) Human proto oncogene nu-cleotide sequence corresponds to the transforming gene of simian sarcoma virus. Science 223:487–491.

    Article  CAS  PubMed  Google Scholar 

  43. Croce CM, Nowell PC (1986) Molecular genetics of human B cell neoplasia. Adv Immunol 38:245–274.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tronick, S.R., Aaronson, S.A. (1986). Oncogenes, Growth Factors, and Receptors. In: Notkins, A.L., Oldstone, M.B.A. (eds) Concepts in Viral Pathogenesis II. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4958-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4958-0_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9375-0

  • Online ISBN: 978-1-4612-4958-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics