Mobility of Heavy Metals in Dredged Harbor Sediments

  • Ulrich Förstner
  • Wolfgang Ahlf
  • Wolfgang Calmano
  • Michael Kersten
  • Wim Salomons

Abstract

Solubility, mobility, and bioavailability of sediment-bound metals can be increased by four major factors: (1) Lowering of pH; (2) changing of redox conditions; (3) formation of organic complexes; and (4) increasing salinity. While the first two factors are particularly important for on-land deposition of dredged materials, the effect of salinity is particularly important for resuspended cadmium-rich sediments in estuaries. Chemical extraction studies, which were carried out under carefully controlled conditions on both fresh and freeze-dried samples, indicate that aeration of anoxic sediments (e.g., on-land disposal) may both increase and decrease the mobility of heavy metals. Transformation from sulfidic or carbonatic associations to oxidic phases will reduce mobility of manganese, wherease the respective changes from moderately reducible forms to carbonatic and easily reducible phases will enhance the reactivity of zinc during oxidation of dredged material.

Keywords

Clay Mercury Titration Respiration Sedimentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlf, W., 1983. The River Elbe: Behaviour of Cd and Zn during estuarine mixing. Environ. Technol. Letts., 4: 405–410.CrossRefGoogle Scholar
  2. Batley, G.E. and Giles, M.S., 1980. A solvent displacement technique for the separation of the sediment interstitial waters. In: R.A. Baker (Editor), Contaminants and Sediments, vol. 2. Ann Arbor Sci. Publ., Ann Arbor, MI, pp. 101–117.Google Scholar
  3. Berner, R.A., 1981. A new geochemical classification of sedimentary environments. J. Sediment. Petrol., 51: 359–365.Google Scholar
  4. Bernhardt, H. (Editor), 1984. Die aquatische Umweltver-träglichkeit vonNitrilotriacetat (NTA). Studie der Fachgruppe Wasserchemie in der GdCh, in Kommission bei Verlag Hans Richarz, St. Augustin, West Germany, 422 pp.Google Scholar
  5. Calmano, W. and Förstner, U., 1983. Chemical extraction of heavy metals in polluted river sediments in Central Europe. Sci. Total Environ., 28: 77–90.CrossRefGoogle Scholar
  6. Calmano, W., Ahlf, W. and Förstner, U., 1983. Heavy metal removal from contaminated sludges with dissolved sulfur dioxide in combination with bacterial leaching. In: Internatl. Conf. Heavy Metals in the Environment, Heidelberg, September 1983, vol. 2. CEP Consultants, Edinburgh, pp. 952–955.Google Scholar
  7. Campbell, P.G.C., Stokes, P.M. and Galloway, J.N., 1983. Effects of atmospheric deposition on the geochemical cycling and biological availability of metals. In: Proc. Internatl Conf. Heavy Metals in the Environment, Heidelberg, September 1983, CEP Consultants, Edinburgh, pp. 760–763.Google Scholar
  8. Chester, R., Kudoja, W.M., Thomas, A. and Towner, J., 1984. Pollution reconnaissance in stream sediment using non-residual trace metals. Environ. Pollut., 10: 213–238.Google Scholar
  9. Dehnad, F., Salecker, M. and Eberle, S.H., 1984. Remobilisierung von Schwermetallen aus Feststoffen von Oberflächengewässern durch Nitrilotriessigsäure. In: H. Bernhardt (Vorsitzender und Mitarbeiter), NTA Studie über die aquatische Umweltverträglichkeit von Nitrilotriacetat (NTA). Herausgegeben von der NTA- Koordinierungsgruppe im Hauptausschuss Phosphate und Wasser der Fachgruppe Wasserchemie in der Gesellschaft Deutscher Chemiker, Verlag, Hans Richarz D-5205 St. Augustin, West Germany, pp. 306–384.Google Scholar
  10. Dreesen, D.R., Gladney, E.S., Owens, J.M., Perkins, B.L., Wienke, C.L. and Wangen, L.E., 1977. Comparison of levels of trace elements extracted from fly ash and levels found in effluent waters from a coal-fired power plant. Environ. Sci. Technol., 11: 1017–1019.CrossRefGoogle Scholar
  11. Dryssen, D. and Wedborg, M., 1980. Major and minor elements, chemical speciation in estuarine waters. In: E. Olausson and I. Cato (Editors), Chemistry and Bio-geochemistry of Estuaries. John Wiley & Sons, Chichester, United Kingdom, pp. 71–119.Google Scholar
  12. Duinker, J.C., 1980. Suspended matter in estuaries: Adsorption and desorption processes. In E. Olausson and I Cato (Editors), Chemistry andBiogeochemistry of Estuaries. John Wiley & Sons, Chichester, United Kingdom, pp. 121–153.Google Scholar
  13. Duinker, J., Wollast, R. and Billen, G., 1979. Behaviour of manganese in the Rhine and Scheldt estuaries. II. Geochemical cycling. Estuarine Coastal Mar. Sci., 9: 727–738.CrossRefGoogle Scholar
  14. Engler, R.M., 1980. Prediction of pollution potential through geochemical and biological procedures: Development of regulatory guidelines and criteria for the discharge of dredged fill material. In R.A. Baker (Editor), Contaminants and Sediments, vol. 1. Ann Arbor Sci. Publ., Ann Arbor, MI, pp. 143–169.Google Scholar
  15. Engler, R.M., Brannon, J.M., Bigham, G. and Rose, J., 1974. A practical selective extraction procedure for sediment characterization. In: 168th Meeting of Am. Chem. Soc. Atlantic City, NJ, 17 pp.Google Scholar
  16. Fagerström, T. and Jernelöv, A., 1972. Aspects of the quantitative ecology of mercury. Water Res., 6: 1193–1202.CrossRefGoogle Scholar
  17. Förstner, U., Calmano, W, Conradt, K., Jaksch, H., Schimkus, C. and Schoer, J., 1981. Chemical speciation of heavy metals in solid waste materials (sewage sludge, mining wastes, dredged materials, polluted sediments) by sequential extraction. In: Proc. Internatl. Conf. Heavy Metals in the Environment. September 1981, Amsterdam, The Netherlands, pp. 698–704.Google Scholar
  18. Förstner, U., Ahlf, W, Calmano, W. and Sellhorn, C., 1984. Metal interactions with organic solids in estuarine waters—experiments on the combined effects of salinity and organic chelators. In: Proc. Internatl. Conf “Environmental Contamination.” July 1984, London, pp. 567–572.Google Scholar
  19. Gambrell, R.P., Khalid, R.A., Verloo, M.G. and Patrick, W.H., Jr., 1977. Transformation of Heavy Metals and Plant Nutrients in Dredged Sediments as Affected by Oxidation and Reduction Potential and pH. II. Materials and Methods/Results and Discussion. U.S. Army Corps of Engineers, Dredged Material Research Program Report D-77-4, Vicksburg, MS, 309 pp.Google Scholar
  20. Gambrell, R.P., Khalid, R.A. and Patrick, W.H., Jr., 1978. Disposal Alternatives for Contaminated Dredged Material as a Management Tool to Minimize Environmental Effects. U.S. Army Engineer Waterways Experi-ment Station, Technical Report DS-78-8, Corps of Engineers, Vicksburg, MS.Google Scholar
  21. Gambrell, R.P., Reddy, C.N. and Khalid, R.A., 1983. Characterization of trace and toxic materials in sediments of a lake being restored. J. Water Poll. Control. Fed., 55: 1201–1213.Google Scholar
  22. Gupta, S.K. and Chen, Y.K., 1975. Partitioning of trace metals in selective fractions on nearshore sediments. Environ. Letts., 10: 129–158.CrossRefGoogle Scholar
  23. Haines, T.A., 1981. Acidic precipitation and its consequences for aquatic ecosystems: a review. Trans. Am. Fish. Soc., 110: 669–707.CrossRefGoogle Scholar
  24. Herms, U. and Brümmer, G., 1978. Löslichkeit von Schwermetallen in Siedlungsabfällen und Böden in Abhängigkeit von pH-Wert, Redoxbedingungen und Stoffbestand. Mitt. Dtsch. Bodenkundl. Ges., 27: 23–43.Google Scholar
  25. Holmes, C.W., Slade, E.A. and McLerran, C.J., 1974. Migration and redistribution of zinc and cadmium in marine estuarine systems. Environ. Sci. Technol., 8: 255–259.CrossRefGoogle Scholar
  26. Jackson, M.L., 1958. Soil Chemical Analysis. Prentice- Hall, Englewood Cliffs, NJ, 498 pp.Google Scholar
  27. Jenne, E.A., 1968. Controls on Mn, Fe, Co, Ni, Cu, and Zn concentrations in soils and water: The significant role of hydrous Mn- and Fe-oxides. Am. Chem. Soc., Adv. Chem. Series, 73: 337–387.Google Scholar
  28. Jonasson, I.R., 1977. Geochemistry of sediment/water interactions of metals, including observations on availa-bility. In: H. Shear and A.E.P. Watson (Editors), The Fluvial Transport of Sediment-Associated Nutrients and Contaminants. IJC/PLUARG, Windsor/Ont., pp. 255–271.Google Scholar
  29. Jouanneau, J.M., 1982. Matières en Suspension et Oligo- Éléments Métalliques dans le Système Estuarin Girondin: Comportement et Flux. Thèse de Doctorat d’Etat et Sciences. l’Université de Bordeaux, France.Google Scholar
  30. Kersten, M. and Kerner, M., 1985. Transformations of heavy metals and plant nutrients in intertidal flat sedi-ment profiles of the Elbe estuary as affected by Eh and tidal cycle. In: Internad. Conf. Heavy Metals in the Environment, Athens, September 1985. CEP Consultants, Edinburgh, pp. 533–535.Google Scholar
  31. Keyser, T.R., Natusch, D.F.S., Evans, C.A. and Linton, R.W., 1978. Characterizing the surface of environmental particles. Environ. Sci. Technol., 12: 768–773.CrossRefGoogle Scholar
  32. Lion, L.W. and Leckie, J.O., 1981. The biochemistry of the air-sea interface. Ann. Rev. Earth Planet. Sci., 9: 449–486.CrossRefGoogle Scholar
  33. Lu, C.S.J. and Chen, K.Y., 1977. Migration of trace metals in interfaces of seawater and polluted surficial sediments. Environ. Sci. Technol., 11: 174–182.CrossRefGoogle Scholar
  34. Luther, G.W., Meyerson, A.L., Krajewski, J.J. and Hires, R., 1980. Metal sulfides in estuarine sediments. J. Sediment. Petrol., 50: 1117–1120.Google Scholar
  35. Mattigod, S.W. and Page, A.L., 1983. Assessment of metal pollution in soils. In: I. Thorton (Editor), Applied Environmental Geochemistry. Academic Press, London, pp. 355–394.Google Scholar
  36. Millward, G.E. and Moore, R.M., 1982. The adsorption of Cu, Mn and Zn by iron oxyhydrate in model estuarine solutions. Water Res., 16: 981–985.CrossRefGoogle Scholar
  37. Morris, A.W., Bale, A.J. and Howland, R.J.M., 1982. The dynamics of estuarine manganese cycling. Est. Coastal Shelf Sci., 13: 175–192.CrossRefGoogle Scholar
  38. Müller, G. and Riethmayer, S., 1982. Chemische Entgiftung: das alternative Konzept zur problemlosen und endgültigen Entsorgung Schwermetall-belasteter Bag-gerschlämme. Chemiker-Ztg., 106: 289–292.Google Scholar
  39. Nembrini, G.P., Rapin, F., Garcia, J.I. and Förstner, U., 1982. Speciation of Fe and Mn in a sediment core of the Baie de Villefranche (Mediterranean Sea, France). Environ. Technol. Letts., 3: 545–552.CrossRefGoogle Scholar
  40. Nürnberg, H.W., 1983. Investigations on heavy metal speciation in natural waters by voltammetric procedures. Fresenius Z. Anal. Chem., 316: 557–565.CrossRefGoogle Scholar
  41. Patrick, W.H. and Khalid, R.A., 1974. Phosphate release and sorption of soils and sediments: Effect of aerobic and anaerobic conditions. Science, 186: 53–55.CrossRefGoogle Scholar
  42. Plant, J. A. and Raiswell, R., 1983. Principles of environmental geochemistry. In: I. Thornton (Editor), Applied Environmental Geochemistry. Academic Press, London, pp. 1–39.Google Scholar
  43. Reddy, K.R. and Patrick, W.H., 1975. Effect of alternate aerobic and anaerobic conditions on redox potential, organic matter decomposition, and nitrogen loss in a flooded soil. Soil Biol. Biochem., 7: 87–94.CrossRefGoogle Scholar
  44. Salomons, W., 1980. Adsorption processes and hydrodynamic conditions in estuaries. Environ. Technol. Letts., 1: 356–365.CrossRefGoogle Scholar
  45. Salomons, W., 1984. Contaminants in sediments: out of sight, out of mind? In: Proc. Internatl. Conf. Environmental Contamination. London, pp. 766–774.Google Scholar
  46. Salomons, W. and Eysink, W., 1981. Pathways of mud and particulate trace metals from rivers to the southern North Sea. In: S.D. Nio, R.T.E. Schuettenhelm and T.C.E. van Weering (Editors), Holocene Sedimentation in the North Sea Basin, vol. 5. Spec. Publ. Int. Assoc. Sedimentologists, pp. 429–450.Google Scholar
  47. Salomons, W. and Förstner, U., 1984. Metals in the Hydrocycle. Springer-Verlag, Berlin, 349 pp.Google Scholar
  48. Singer, P.C. and Stumm, W., 1970. Acidic mine drainage: The rate-determining step. Science, 167: 1121–1123.CrossRefGoogle Scholar
  49. Smith, R.M. and Martell, A.E., 1976. Critical Stability Constants: Inorganic Complexes, vol. 4. Plenum Press, New York.Google Scholar
  50. Stumm, W. and Morgan, J.J., 1981. Aquatic Chemistry, ed. 2. John Wiley & Sons, New York.Google Scholar
  51. Suess, E., 1979. Mineral phases formed in anoxic sediments by microbial decomposition of organic matter. Geochim. Cosmochim. Acta, 43: 339–352.CrossRefGoogle Scholar
  52. Sundby, B., Siverberg, N. and Chesselet, R., 1981. Pathways of manganese in an open estuarine system. Geochim. Cosmochim. Acta, 45: 293–307.CrossRefGoogle Scholar
  53. Tessier, A., Campbell, P.G.C. and Bisson, M., 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem., 51: 844–851.CrossRefGoogle Scholar
  54. Turner, R.R., Lowery, P., Levin, M., Lindberg, S.E. and Tamura, T., 1982. Leachability and Aqueous Speciation of Selected Trace Constituents of Coal Fly Ash. Final Report, Research Project 1061-1/EA-2588, Electric Power Research Institute, Palo Alto, CA.Google Scholar
  55. Windom, H.L., Wallace, G., Smith, R., Dudek, N., Maeda, M., Dulmage, R. and Storti, F., 1983. Behavior of copper in southeastern United States estuaries. Mar. Chem., 12: 183–193.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • Ulrich Förstner
  • Wolfgang Ahlf
  • Wolfgang Calmano
  • Michael Kersten
  • Wim Salomons

There are no affiliations available

Personalised recommendations