Particulate and Dissolved Materials in the Rio Negro-Amazon Basin

  • W. L. F. Brinkmann
Conference paper


The Rio Negro, a tributary of the Amazon River, is the largest “blackwater” river in the world. The concentrations of dissolved solids and suspended sediments are extremely low in the Rio Negro. Both loads amount to a considerable loss from the river basin because of the discharge, which is in the order of 20,000–40,000 m3/s, depending on the season.


Humic Substance Suspended Sediment Dead Organic Matter Fringe Forest Organic Colloid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brinkman, W.L.F., 1981. Zum Chemismus von Schwarzwässern in Zentralamazonien. Beiträge zur Hydrologie, 2: 121–135.Google Scholar
  2. Brinkmann, W.L.F., 1983a. Nutrient balance of a central Amazonian rainforest: comparison of natural and man- managed systems. In: Proc. of Hamburg Symposium. IAHS Publ. No. 140. pp. 153–163.Google Scholar
  3. Brinkmann, W.L.F., 1983b. Hydrogeochemistry of groundwater resources in central Amazonia, Brazil. In: Proc. of Koblenz Symposium, Groundwater in Water Resources Planning, vol. I, pp. 67–83.Google Scholar
  4. Brinkmann, W.L.F., 1985. Calcium and magnesium dynamics of a natural tropical rainforest system. In: Symposium Forest and Water, vol. 1, pp. 323–334. Grafenau.Google Scholar
  5. Brinkman, W.L.F. and Santos, U. de. M., 1974. The emission of biogenic hydrogen sulfide from Amazonian floodplain lakes. Tellus, 26 (l–2): 261–267.CrossRefGoogle Scholar
  6. Corrêa, A.A., Lobato, R. de F. and Ribeiro, E.B.P., 1970. Estudo Papeileiro de Madeiras da Amazônia. INPA, pp. 1–36.Google Scholar
  7. Fittkau, E.J., 1974. ökologischen Gliederung Amazoniens I. Die erdgeschichtliche Entwicklung Amazoniens. Amazoniana, 1: 77–134.Google Scholar
  8. Gibbs, R.J., 1967. The geochemistry of the Amazon river system. Part I. The factors that control the salinity and the composition and concentration of the suspended solids. Geol. Soc. Am. Bull, 78: 1203–1232.CrossRefGoogle Scholar
  9. Irion, G., 1983. Tonmineralien in der Schwebfracht von Flüssen des Amazonasgebietes und von Papua Neuguinea. Zbl. Geol. Paläont., Teil, 1 (3/4): 502–515.Google Scholar
  10. Irmler, U., 1975. Ecological studies of the aquatic soil invertebrates in three inundation forests of central Amazonia. Amazoniana, 3: 337–400.Google Scholar
  11. Klinge, H., 1967. Podzol soils: a source of blackwater rivers in Amazonia. In: Atlas do sympôsio sôbre a biota Amazônica, vol. 3, pp. 117–125.Google Scholar
  12. Sakamoto, T., 1960. Rock weathering on “terra firmes”and deposition on “varzeas” in the Amazon. J. Fac. Sci., Univ. Tokyo, xii(2, II): pp. 155–214.Google Scholar
  13. Salati, E., Lovejoy, T.E. and Voce, P.B., 1983. Precipitation and water recycling in the tropical rain forests. The Environmentalist, 3: 67–72.Google Scholar
  14. Sioli, H., 1955. Beiträge zur regionalen Limnologie des Amazonasgebietes III. Über die Gewässer des oberen Rio Negro-Gebietes. Arch. f. Hydrobiol, 50 (1): 1–32.Google Scholar
  15. Stallard, R.F. and Edmont, J.M., 1983. Geochemistry of the Amazon 2. The influence of geology and weathering environment on the dissolved load. J. Geophys. Res., 88 (C14): 9671–9688.CrossRefGoogle Scholar
  16. Takeuchi, M., 1960. The structure of the Amazonian vegetation I. Savanna in northern Amazon. J. Fac. Sci., Univ. Tokyo, 7 (12, III): 523–533.Google Scholar
  17. Vieira, L.S. and Filho, J.D., 1962. As caatingas do Rio Negro.Bol. Tec. Inst. Agron. N., 42: 7–32.Google Scholar
  18. Ziechmann, W., 1976. Huminstoffe in südamerikanischen Flußsystemen. Amazoniana, 1 (1): 135–144.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • W. L. F. Brinkmann

There are no affiliations available

Personalised recommendations