Advertisement

Mechanism and Structural Basis for Recognition of Signal Peptides

  • Glen Hortin
Part of the Springer Series in Molecular Biology book series (SSMOL)

Abstract

The Signal Hypothesis proposes that information for segregation of secretory proteins from cytoplasmic proteins is encoded within signal peptides by a highly specific structure or signal that binds to a receptor. However, to date, no specific signal has been identified within the sequence or conformation of signal peptides. Here, the effects of various structural alterations on signal peptide function are examined. More than 50 altered signal peptides were generated by incorporation of amino acid analogs during protein synthesis. Most of these structural changes of signal peptides did not block their function; only five cases were noted in which segregation of secretory proteins was impaired. The general conclusion from this study and from other available data is that signal peptides express only a low degree of structural specificity that is incompatible with their serving as ligands for a high-affinity receptor, as suggested in the Signal Hypothesis. A new model, termed the “Allosteric Model,” is presented to explain how signal peptides are recognized despite their considerable structural diversity.

Keywords

Signal Peptide Secretory Protein Signal Recognition Particle Signal Hypothesis Leucine Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blobel G. (1982) Harvey Lect. 76, 125–147.Google Scholar
  2. 2.
    Kreil G. (1981) Ann. Rev. Biochem. 50, 317–348.PubMedCrossRefGoogle Scholar
  3. 3.
    Meyer D. I. (1982) Trends Biochem. Sci. 7, 320–321.CrossRefGoogle Scholar
  4. 4.
    Sabatini D. D., Kreibich G., Morimoto T. & Adesnik M. (1982) J. Cell Biol. 92, 1–22.PubMedCrossRefGoogle Scholar
  5. 5.
    Strauss A. W. & Boime I. (1982) CRC Crit. Rev. Biochem. 12, 205–236.Google Scholar
  6. 6.
    Milstein C., Brownlee G. G., Harrison T. M. & Mathews M. B. (1972) Nature New Biol. 239, 117–120.PubMedCrossRefGoogle Scholar
  7. 7.
    Blobel G., & Dobberstein B. (1975) J. Cell Biol. 67, 835–851.PubMedCrossRefGoogle Scholar
  8. 8.
    Devillers-Thiery A., Kindt T., Schecle G., & Blobel G. (1975) Proc. Natl. Acad. Sci. USA 72, 5016–5020.CrossRefGoogle Scholar
  9. 9.
    Austen B. M. (1979) FEBS Lett. 103, 308–313.PubMedCrossRefGoogle Scholar
  10. 10.
    Gamier J., Gaye P., Mercier J. C., & Robson B. (1980) Biochemie 62, 231–239.CrossRefGoogle Scholar
  11. 11.
    Chan S. J., Patzelt C., Duguid J. R., Quinn P., Labrecque A., Noyes B., Keim P., Heinrikson R. L., & Steiner D. F. (1979) In From Gene to Protein: Information Transfer in Normal and Abnormal Cells (pp. 361–378 ), Russell T. R., Brew K., Faber, H., & Schultz J., eds. Academic Press, New York.Google Scholar
  12. 12.
    Perlman D., & Halvorsen H. O. (1983) J. Mol. Biol. 167, 391–410.PubMedCrossRefGoogle Scholar
  13. 13.
    Von Heijne G. (1980) Eur. J. Biochem. 103, 431 - 438.CrossRefGoogle Scholar
  14. 14.
    Von Heijne G. (1981) Eur. J. Biochem. 116, 419 - 422.CrossRefGoogle Scholar
  15. 15.
    Hortin G., & Boime I. (1980) Proc. Natl. Acad. Sci. USA 77, 1356–1360.PubMedCrossRefGoogle Scholar
  16. 16.
    Emr S. D., Hedgepeth J., Clement J. M., & Silhavy T. J. (1980) Nature 285, 82–85.PubMedCrossRefGoogle Scholar
  17. 17.
    Bedouelle H., Bassford P.J. Jr., Fowler A. V., Zabin I., Beckwith J., & Hofnung M. (1980) Nature 285, 78–81.PubMedCrossRefGoogle Scholar
  18. 18.
    Hortin G. & Boime I. (1983) Meth. Enzymol. 96, 777–784.PubMedCrossRefGoogle Scholar
  19. 19.
    Hortin G. & Boime I. (1981) Cell 24, 453–461.PubMedCrossRefGoogle Scholar
  20. 20.
    Hortin G. & Boime I. (1983) Trends Biochem. Sci. 8, 320–323.CrossRefGoogle Scholar
  21. 21.
    Gordon J. I., Smith D. P., Andy R., Alpers D. H., Schonfeld G., & Strauss A. W. (1982) J. Biol. Chem. 257, 971–978.PubMedGoogle Scholar
  22. 22.
    Hortin G. (1983) Ph.D. Thesis. Washington University, St. Louis, MO.Google Scholar
  23. 23.
    Haley J., Hudson P., Scanlon D., John M., Cronk M., Shine J., Tregear G. & Niall H. (1982) DNA 1, 155–162.PubMedCrossRefGoogle Scholar
  24. 24.
    Gast M. J. (1983) J. Biol. Chem. 258, 9001–9004.PubMedGoogle Scholar
  25. 25.
    Vlasuk G. P., Inouye S., Ito H., Itakura K. & Inouye M. (1983) J. Biol. Chem. 258, 7141–7148.PubMedGoogle Scholar
  26. 26.
    Hall M. N., Gabay J. & Schwartz M. (1983) EMBO J. 2, 15–19.PubMedGoogle Scholar
  27. 27.
    Lomedico P., Rosenthal N., Efstsratidadis A., Gilbert W., Kolodner R. & Tizard R. (1979) Cell 18, 545–558.PubMedCrossRefGoogle Scholar
  28. 28.
    Talmadge K., Stahl S., & Gilbert W. (1980) Proc. Natl. Acad. Sci. USA 77, 3369–3373.PubMedCrossRefGoogle Scholar
  29. 29.
    Muller M., Ibrahimi I., Chang C. N., Walter P. & Blobel G. (1982) J. Biol. Chem. 257, 11860–11863.PubMedGoogle Scholar
  30. 30.
    Roggenkamp R., Kusterman-Kuhn B., & Hollenberg C. P. (1981) Proc. Natl. Acad. Sci. USA 78, 4466–4470.PubMedCrossRefGoogle Scholar
  31. 31.
    Meyer D. I., Krause E. & Dobberstein B. (1982) Nature 297, 647–650.PubMedCrossRefGoogle Scholar
  32. 32.
    Meyer D. I., Louvard D. & Dobberstein B. (1982) J. Cell. Biol. 92, 579–583.PubMedCrossRefGoogle Scholar
  33. 33.
    Gilmore R., Blobel G. & Walter P. (1982) J. Cell. Biol. 95, 463–469.PubMedCrossRefGoogle Scholar
  34. 34.
    Gilmore R., Walter P., & Blobel G. (1982) J. Cell. Biol. 95, 470–477.PubMedCrossRefGoogle Scholar
  35. 35.
    Walter P., Ibrahimi I. & Blobel G. (1981) J. Cell. Biol. 91, 545–550.PubMedCrossRefGoogle Scholar
  36. 36.
    Walter P., & Blobel G. (1981) J. Cell. Biol. 91, 551–556.PubMedCrossRefGoogle Scholar
  37. 37.
    Walter P., & Blobel G. (1981) J. Cell. Biol. 91, 557–561.PubMedCrossRefGoogle Scholar
  38. 38.
    Walter P. & Blobel G. (1982) Nature 299, 691–697.PubMedCrossRefGoogle Scholar
  39. 39.
    Blobel G., & Sabatini D. (1970) J. Cell. Biol. 45, 130–145.PubMedCrossRefGoogle Scholar
  40. 40.
    Malkin L. I. & Rich A. (1967) J. Mol. Biol. 26, 329–346.PubMedCrossRefGoogle Scholar
  41. 41.
    Emr S. D., & Silhavy T. J. (1983) Proc. Natl. Acad. Sci. USA 80, 4599–4603.CrossRefGoogle Scholar
  42. 42.
    Wool I. G. (1979) Ann. Rev. Biochem. 48, 719–754.PubMedCrossRefGoogle Scholar
  43. 43.
    Majzoub J. A., Rosenblatt M., Fennick B., Maunus R., Kronenberg H. M., Potts J. T. Jr., & Habener J. F. (1980) J. Biol. Chem. 265, 11478–11483.Google Scholar
  44. 44.
    Lingappa V. R., Lingappa J. R., & Blobel G. (1979) Nature 281, 117–121.PubMedCrossRefGoogle Scholar
  45. 45.
    Palmiter R. D., Gagnon J., & Walsh K. A. (1978) Proc. Natl. Acad. Sci. USA 75, 94–98.CrossRefGoogle Scholar
  46. 46.
    Braell W. A., & Lodish H. F. (1982) J. Biol. Chem. 257, 4578–4582.PubMedGoogle Scholar
  47. 47.
    Glazer R. I., & Sartorelli A. C. (1972) Biochem. Biophys. Res. Commun. 46, 1418–1425.CrossRefGoogle Scholar
  48. 48.
    Hirashima A., Childs G. & Inouye M. (1973) J. Mol. Biol. 79, 373–389.PubMedCrossRefGoogle Scholar
  49. 49.
    Halegoua S., Hirashima A., & Inouye M. (1976) J. Bacteriol. 126, 183–191.PubMedGoogle Scholar
  50. 50.
    Borgese N., Mok W., Kreibich G., & Sabatini D. D. (1974) J. Mol. Biol. 88, 559–580.PubMedCrossRefGoogle Scholar
  51. 51.
    Dombou M., Mizuno T., & Mizushima S. (1977) Mol. Gen. Genet. 155, 53–60.PubMedCrossRefGoogle Scholar
  52. 52.
    Mizuno T., Yamada H., Yamagata H. & Mizushima S. (1977) J. Bacterid. 125, 524–530.Google Scholar
  53. 53.
    Mizuno T., Yamagata H., & Mizushima S. (1977) J. Bacteriol. 129, 326–332.PubMedGoogle Scholar
  54. 54.
    Schekman R. (1982) Trends Biochem. Sci. 7, 243–246.CrossRefGoogle Scholar
  55. 55.
    Emr S. D., Hanley-Way S., & Silhavy T. J. (1981) Cell 23, 79–88.PubMedCrossRefGoogle Scholar
  56. 56.
    Hortin G., & Boime I. (1980) J. Biol. Chem. 255, 8007–8010.PubMedGoogle Scholar
  57. 57.
    Hortin G., Stern A. M., Miller B., Abeles R. H., & Boime I. (1983) J. Biol. Chem. 258, 4047–4050.PubMedGoogle Scholar
  58. 58.
    Hortin G., & Boime I. (1981) J. Biol. Chem. 256, 1491–1494.PubMedGoogle Scholar
  59. 59.
    Hoshina H., Hortin G., & Boime I. (1982) Science 217, 63–64.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • Glen Hortin

There are no affiliations available

Personalised recommendations