Advertisement

Generalized Mathematical Models for the Fractional Evolution of Vapor from Magmas in Terrestrial Planetary Crusts

  • Philip A. Candela
Part of the Advances in Physical Geochemistry book series (PHYSICAL GEOCHE, volume 6)

Abstract

The geological literature is replete with models for the differentiation of magmas that occur on Earth, the Moon, and other terrestrial bodies. The models involve processes such as crystal/liquid fractionation (Allégre and Minster, 1978), diffusion (Wright et al., 1983), magma chamber replenishment (O’Hara, 1977), magma mixing (McBirney,1980) and assimilation (Grove et al., 1982). However, few of these models include a quantitative treatment of the effects of magmatic vapor evolution on melt, crystal, or vapor chemistry, although qualitative appeals to such processes are commonplace. Vapor evolution has been cited as a possible explanation for aplite chemistry (Fourcade and Allegre, 1981), rubidium depletion in igneous amphibole (Chivas, 1981), magmatic oxidation effects (Chivas, 1981), fluorine depletion in suites of igneous rocks (McMillan, 1982) and as a source for ore metals in many ore deposits (c.f. Burnham, 1979). In his Evolution of the Igneous Rocks, N. L. Bowen (1928) states: “To many petrologists a volatile component is exactly like a Maxwell demon; it does just what one may wish it to do.” Apparently his demon is alive and well, and a quantitative model of vapor evolution is needed to test the above hypotheses.

Keywords

Partition Coefficient Incompatible Element Aqueous Fluid Porphyry Copper Volatile Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allégre, C. J., and Minster, J. F. (1978) Quantitative models of trace element behavior in magmatic processes, Earth. Planet. Sci. Lett. 38, 1–25.CrossRefGoogle Scholar
  2. Anderson, A. T. (1974) Chlorine, sulfur, and water in magmas and oceans, Geol. Soc. Amer. Bull. 85, 1485–1492.CrossRefGoogle Scholar
  3. Andriambololona, R., and Dupuy, C. (1978) Répartition et comportement des éléments de transition dans les roches volcaniques. I. cuivre et zinc, Bull. B.R.G.M. No. (2), Section II, 121–138.Google Scholar
  4. Bowen, N. L. (1928) The Evolution of the Igneous Rocks. Republished by Dover Publications, Toronto, 1956, 322 pp.Google Scholar
  5. Burnham, C. W. (1979) Magmas and hydro thermal fluids, in Geochemistry of Hydrothermal Ore Deposits, 2nd ed., edited by H. L. Barnes, pp 71–136. John Wiley and Sons, New York.Google Scholar
  6. Burnham, C. W., and Davis, N. F. (1974) The role of H2O in silicate melts: II thermodynamic and phase relations in the system NaAlSi3O8-H2O to 10 kilobars and 1100°C, Amer. J. Sci. 274, 902–940.CrossRefGoogle Scholar
  7. Campbell, A., Rye, D., and Petersen, U. (1984) A hydrogen and oxygen isotope study of the San Cristobal Mine, Peru: Implications of the role of water to rock ratio for the genesis of Wolframite deposits, Econ. Geol. 79, 1818–1832.CrossRefGoogle Scholar
  8. Candela, P. A. (1982) Copper and Molybdenum in Silicate Melt-Aqueous Fluid Systems. Ph.D. Thesis, Harvard University, Cambridge, Massachusetts, 138 pp.Google Scholar
  9. Candela, P. A. (1986) Toward a thermodynamic model for the Halogens in silicate melts: application to apatite-melt-vapor equilibria, in review, 1986.Google Scholar
  10. Candela, P. A., and Holland, H. D. (1984) The partitioning of copper and molybdenum between silicate melts and aqueous fluids, Geochim. Cosmochim. Acta 48, 373–380.CrossRefGoogle Scholar
  11. Candela, P. A., and Holland, H. D. (1984) The partitioning of copper and molybdenum between silicate melts and aqueous fluids, Geochim. Cosmochim. Acta 48, 373–380.CrossRefGoogle Scholar
  12. Carr, M. C. (1981) The Surface of Mars. Yale University Press, New Haven, 232 pp.Google Scholar
  13. Carron, J. P., and LaGache, M. (1980) Etude experimentale du fractionnement des elements Rb, Cs, Sr, et Ba entre feldspaths alcalins, solutions hydrothermals et liquides silicates dans le systeme Q.Ab.0r.H2O à 2Kbar entre 700 et 800°C, Bull. Mineral. 703, 571–578.Google Scholar
  14. Chivas, A. R. (1981) Geochemical evidence for magmatic fluids in porphyry copper mineralization, part I, mafic silicates from the Koloula Igneous Complex, Contrib. Mineral. Petrol. 78, 389–403.CrossRefGoogle Scholar
  15. Dingwell, D. B., and Scarfe, C. N. (1983) Major element partitioning in the system haplogranite-HF-H2O: implications for leucogranites and high-silica rhyolites, EOS 64, 342.Google Scholar
  16. Eichelberger, J. C., Lysne, P. G., Miller, C. D., and Younker, L. W. (1985) 1984 drilling results at Inyo Domes, California, EOS 66, 384.Google Scholar
  17. Flynn, R. T., and Burnham, C. W. (1978) An experimental determination of rare earth partition coefficients between a chloride-containing vapor phase and silicate melts, Geochim. Cosmochim. Acta 42, 685–701.CrossRefGoogle Scholar
  18. Fourcade, S. and Allégre, C. J. (1981) Trace element behavior in granite genesis: a case study. The calc-alkaline plutonic association from the Querigut Complex (Pyrenées, France), Contrib. Mineral. Petrol. 76, 177–195.CrossRefGoogle Scholar
  19. Gammon, J. B., Borcsik, M., and Holland, H. D. (1969) Potassium-sodium ratio in aqueous solutions and co-existing silicate melts, Science, 163, 179–181.CrossRefGoogle Scholar
  20. Gill, J. (1981) Orogenic Andesites and Plate Tectonics. Springer-Verlag, Berlin, 390 pp.Google Scholar
  21. Grove, T. L., Gerlach, D. C., and Sando, T. W. (1982) Origin of calc-alkaline series lavas at Medicine Lake Volcano by fractionation, assimilation and mixing, Contrib. Mineral. Petrol. 80, 160–182.CrossRefGoogle Scholar
  22. Gunow, A. J. (1983) Trace Element Mineralogy in the Porphyry Molybdenum Environment. Ph.D. Thesis, University of Colorado, Boulder, Colorado, 267 pp.Google Scholar
  23. Hibbard, M. J. (1980) Indigenous source of late-stage dikes and veins in granitic plutons, Econ. Geol. 75, 410–423.CrossRefGoogle Scholar
  24. Higgins, M. D. (1985) Boron in the Inyo Domes rhyolites: mobile but not volatile, EOS, 66, 387.Google Scholar
  25. Holland, H. D. (1972) Granites, solutions and base metal deposits, Econ. Geol. 67, 281– 301.CrossRefGoogle Scholar
  26. Kilinc, I. A. (1969) Experimental Metamorphism and Anatexis of Shales and Graywackes. Ph.D. Thesis, The Pennsylvania State University, University Park, Pennsylvania, 178 pp.Google Scholar
  27. Kilinc, I. A., and Burnham, C. W. (1972) Partitioning of chloride between a silicate melt and coexisting aqueous phase from 2 to 8 kilobars, Econ. Geol. 67, 231–235.CrossRefGoogle Scholar
  28. Le Guern, F., and Bernard, A. (1982) A new method for sampling and analyzing volcanic sublimates—application to Merapi Volcano, Java, J. Volcanol. Geotherm. Res., 12, 133–146.CrossRefGoogle Scholar
  29. McBirney, A. R. (1980) Mixing and unmixing of magmas, J. Volcanol. Geotherm Res. 7, 357–371.CrossRefGoogle Scholar
  30. McMillan, W. J. (1982) The behavior of U, Th, and other trace elements during evolution of the Guichon Creek Batholith, British Columbia; in Uranium in Granites, edited by Y. T. Maurice, pp. 49–53. Paper 81–23, Geol. Surv. Canada, Ottawa.Google Scholar
  31. Neumann, H. (1948) On hydrothermal differentiation, Econ. Geol. 43, 77–83.CrossRefGoogle Scholar
  32. O’Hara, M. J. (1977) Geochemical evolution during fractional crystallization of a periodically refilled magma chamber, Nature (London) 266, 503–507.CrossRefGoogle Scholar
  33. Pichavant, M. (1981) An experimental study of the effect of boron on a water saturated haplogranite at 1 kbar vapor pressure, Contrib. Mineral Petrol. 76, 430–439.CrossRefGoogle Scholar
  34. Stolper, E. (1982) The speciation of water in silicate melts, Geochim. Cosmochim. Acta 46, 2609–2620.CrossRefGoogle Scholar
  35. Taylor, B. E., Eichelberger, J. C., and Westrich, H. R. (1983) Hydrogen isotopic evidence of rhyolite magma degassing during shallow intrusion and eruption, Nature (London) 306, 541–545.CrossRefGoogle Scholar
  36. Taylor, P. S., and Stoiber, R. E. (1973) Soluble material on ash from active Central American volcanoes, Geol. Soc. Amer. Bull. 84, 1031–1042.CrossRefGoogle Scholar
  37. Thomas, E., Varekamp, J. C., and Buseck, P. R. (1982) Zinc enrichment in the phreatic ashes of Mt. St. Helens, April 1980, J. Volcanol. Geotherm. Res. 12, 339–350.CrossRefGoogle Scholar
  38. Tiller, W. A., Jackson, K. A., Rutter, J. W., and Chalmers, B. (1953) The redistribution of solute atoms during the solidification of metal, Acta Metallury, 1, 428–437.CrossRefGoogle Scholar
  39. Toulmin, P., Baird, A. K., Clark, B. C., Keil, K., Rose, H. J., Christian, R. P., Evans, P. H., and Kelliher, W. C. (1977) Geochemical and mineralogical interpretation of the Viking inorganic chemical results, J. Geophys. Res. 82, 4625–4634.CrossRefGoogle Scholar
  40. White, W. A., Bookstrom, A. A., Kamilli, R. J., Ganster, M. W., Smith, R. P., Ranta, D. E., and Steininger, R. C. (1981) Character and origin of Climax-type molybdenum deposits, Econ. Geol. 75th Anniv. Vol., 270–316.Google Scholar
  41. Wright, C. J., McCarthy, T. S., and Cawthorn, R. G. (1983) Numerical modelling of trace element fractionation during diffusion controlled crystallization, Comp. Geosci. 9, 367–389.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • Philip A. Candela

There are no affiliations available

Personalised recommendations