Skip to main content

Glycosphingolipids as Specific Differentiation-Markers and Differentiation-Inducers for Human Myelogenous Leukemia Cells: A Monosialyl Glycosphingolipid, Ganglioside GM3, is Highly Potent for Induction of Monocytic Differentiation of Human Myeloid and Monocytoid Cell Lines, HL-60 and U937 Cells

  • Conference paper
Experimental Hematology Today—1985

Part of the book series: Experimental Hematology Today ((HEMATOLOGY,volume 1985))

  • 30 Accesses

Abstract

Multiple surface-marker analysis recently developed in terms of immunologic, cytogenetic and enzymatic characteristics showed that human acute myelogeous leukemias and their established cell lines were blocked in cell maturation at certain, recognizable differentiation-steps such as myeloblast or promyelocyte stage. Many research-groups including us have demonstrated that some of them could be induced to differentiate into mature functioning cells by various chemical agents, implying the possibility that some leukemic cells are capable of maturation under certain environmental circumstances. This phenomenon gives profound therapeutic importance as well as one of the basic experimental models, providing a clue for elucidating the fundamental mechanisms of regulation for growth and differentiation of hematopoietic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Collins SJ, Gallo RC, Gallagher RE: Continuous growth and differentiation of human myeloid leukemic cells in suspension culture. Nature 270: 347, 1977

    Article  PubMed  CAS  Google Scholar 

  2. Collins SJ, Ruscetti FW, Gallagher RE, Gallo RC: Normal functional characteristics of cultured human promyelocytic leukemia cells (HL-60) after induction of differentiation by dimethylsu- lfoxide. J Exp Med 149: 969, 1979

    Article  PubMed  CAS  Google Scholar 

  3. Nojiri H, Takaku F, Tetsuka T, Saito M: Stimulation of sialidase activity during cell differentiation of human promyelocytic leukemia cell line HL- 60. Biochem Biophys Res Commun 104: 1239, 1982

    Article  PubMed  CAS  Google Scholar 

  4. Kitagawa S, Ohta M, Nojiri H, Kakinuma K, Saito M, Takaku F, Miura Y: Functional maturation of membrane potential changes and superoxide-producing capa-city during differentiation of human granulocytes. J Clin Invest 73: 1062, 1 984

    Google Scholar 

  5. Nojiri H, Takaku F, Tetsuka T, Motoyoshi K, Miura Y, Saito M: Characteristic expression of glycosphingolipid profiles in the bipotential cell differentiation of human promyelocytic leukemia cell line HL-60. Blood 64: 534, 1984

    PubMed  CAS  Google Scholar 

  6. Collins SJ, Ruscetti FW, Gallagher RE, Gallo RC: Terminal differentiation of human promyelocytic leukemia cells induced by dimethylsulfoxide and other polar compounds. Proc Natl Acad Sei USA 75: 2458, 1978

    Article  CAS  Google Scholar 

  7. Rovera G, O’Brien TG, Diamond L: Induction of differentiation in human promyelocytic leukemia cells by tumor promoters. Science (Wash DC) 204: 868, 1979

    Article  CAS  Google Scholar 

  8. Sundström C, Nilsson K: Establishment and characterization of a human histiocytic lymphoma line (U937). Int J Cancer 17: 565, 1976

    Article  PubMed  Google Scholar 

  9. Karlsson KA: Aspects on structure and function of sphingolipids in cell surface membranes. In: Structure of Biological Membranes. Edited by Abrahamss- on S, Pascher I. Plenum Publishing Co, New York, 1976, pp 245–274

    Google Scholar 

  10. Hakomori S-I: Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Ann Rev Biochem 50: 23. 733, 1981

    Article  PubMed  CAS  Google Scholar 

  11. Saito M, Nojiri H, Takaku F, Minowada J: Dinstinctive characteristics of ganglioside-profiles in human leukemia -lymphoma cell lines. In: New Vistas in Glycolipid Research, Adv Med Biol, vol 152, Edited by Makita A, Handa S, Taketomi T, Nagai Y. Plenum Publishing Co, New York, 1982, pp 3690–384

    Google Scholar 

  12. Klock JC, Macher BA, Lee WMF: Complex carbohydrates as differentiation markers in malignant blood cells: Glycolipids in human leukemias. Blood Cells 7: 247, 1981

    PubMed  CAS  Google Scholar 

  13. Rosenfelder G, Ziegler A, Wernet P, Braun DG: Ganglioside patterns: New biochemical markers for human hematopoietic cell lines. J Natl Cancer Inst 68: 203, 1982

    PubMed  CAS  Google Scholar 

  14. Saito M, Nojiri H, Yamada M: Changes in phospholipid and ganglioside during differentiation of mouse myeloid leukemia cells. Biochem Biophys Res Commun 97: 452, 1980

    Article  PubMed  CAS  Google Scholar 

  15. Kitagawa S, Saito M: Functional and biochemical alterations during differentiation of human granulocytes. Acta Hematol Jpn 46: 1462, 1983

    CAS  Google Scholar 

  16. Saito M, Sugano K, Nagai Y: Action of Arthrobacter ureafaciens sialidase on sialoglycolipid substrates: Mode of action and highly specific recognition of the oligosaccharide moiety of ganglioside GM1. J Biol Chem 254:7845, 1 979

    Google Scholar 

  17. Saito M, Sugano K, Nagai Y: Action of Arthrobacter ureafaciens sialidase on sialoglycolipid substrates: Mode of action and highly specific recognition of the oligosaccharide moiety of ganglioside GM1. J Biol Chem 254:7845, 1 979

    Google Scholar 

  18. Breitman TR, Collins SJ, Keene BR: Replacement of serum by insulin and transferrin supports growth and differentiation of the human promyelocytic cell line HL-60. Exp Cell Res 126:494, 1 980

    Google Scholar 

  19. Li CY, Lam KW, Yam LT: Esterases in human leukocytes. J Histochem Cytochem 21: 1, 1973

    Article  PubMed  CAS  Google Scholar 

  20. Mittler RS, Talle MA, Carpenter K, Rao PE, Goldstein G: Generation and characterization of monoclonal antibodies reactive with human B lymphocytes. J Immunol 131: 1754, 1983

    PubMed  CAS  Google Scholar 

  21. Wright SD, Rao PE, Van Voorhis WC, Craigmyle LS, Iida K, Talle MA, Westberg EF, Goldstein G, Silverstein SC: Identification of the C3bi receptor of human monocytes and macrophages by using monoclonal antibodies. Proc Natl Acad Sci USA 80: 5699, 1983

    Article  PubMed  CAS  Google Scholar 

  22. Talle MA, Rao PE, Westberg E, Allegar N, Makowski M, Mittler RS, Goldstein G: Patterns of antigenic expression on human monocytes as defined by monoclonal antibodies. Cell Immunol 78:83, 1 983

    Google Scholar 

  23. Momoi T, Ando S, Nagai Y: High resolution preparative column chromatographic system for gangliosides using DEAE- Sephadex and a new porous silica, Iatrobeads. Biochim Biophys Acta 441:488, 1 976

    Google Scholar 

  24. Ando S, Chang N-C, Yu RK: High-performance thin-layer chromatography and densitometric determination of brain ganglioside compositions of several species. Anal Biochem 89: 437, 1978

    Article  PubMed  CAS  Google Scholar 

  25. Suzuki K: A simple and accurate micro- method for quantitative determination of ganglioside patterns. Life Sci 3: 1227, 1964

    Article  PubMed  CAS  Google Scholar 

  26. Bremer EG, Hakomori S-I, Bowen-Pope DF, Raines E, Ross R: Ganglioside-mediatd modulation of cell growth, growth factor binding, and receptor phosphorylation. J Biol Chem 259: 6818, 1984

    PubMed  CAS  Google Scholar 

  27. Macher BA, Lee WMF, Westrick MA: Glycosphingolipids of normal and leukemic leukocytes. Mol Cell Biochem 47:81, 1 982

    Google Scholar 

  28. Laine RA, Hakomori S-I: Incorporation of exogenous glycosphingolipids in plasma membranes of cultured hamster cells and concurrent change of growth behavior. Biochem Biophys Res Commun 54: 1039, 1973

    Article  PubMed  CAS  Google Scholar 

  29. Icarel-Liepkalns I, Liepkalns VA, Yates AJ, Stephens RE: Cell cycle phases of a novel human neural cell line and the effect of exogeno des. Biochem Biophys Res Commun 105: 225, 1982

    Article  Google Scholar 

  30. Keenan TW, Schmid E, Franke WW, Wiegandt H: Exogenous glycosphingolipids supress growth rate of transformed and untransformed 3T3 mouse cells. Exp Cell Res 92: 259, 1975

    Article  PubMed  CAS  Google Scholar 

  31. Bremer EG, Hakomori S-I: GM3 ganglio- side induces hamster fibroblast growth inhibition in chemically-defined medium: Ganglioside may regulate growth factor receptor function. Biochem Biophys Res Commun 106: 711, 1982

    Article  PubMed  CAS  Google Scholar 

  32. Yamakawa T, Suzuki S: The chemistry of the lipids of posthemolytic residue or stroma of erythrocytes. I. Concerning the ether-insoluble lipids of lyophilized horse blood stroma. J Biochem (Tokyo) 38: 199, 1951

    CAS  Google Scholar 

  33. Klenk E, Wolter HZ: Uber die Zuckerhaltigen Lipoids des Erythrocytenstromas von Pferde. Hoppe-Seyler’s Z Physiol Chem 291: 259, 1951

    Google Scholar 

  34. Handa S, Yamakawa T: Chemistry of lipids of post hemolytic residue or stro¬ma of erythrocytes. XII. Chemical structure and chromatographic behaviour of hematosides obtained from equine and dog erythrocytes. Japan J Exp Med 34: 293, 1964

    CAS  Google Scholar 

  35. Klenk E, Padberg G: Über die Ganglioside von Pferdeerythrocyten. Hoppe-Seyler’s Z Physiol Chem 327: 249, 1962

    Article  PubMed  CAS  Google Scholar 

  36. Klenk E, Heuer KZ: Über die Ganglioside der Hundeerythrozyten. Dtsch Z f Verdauungs-u Stoffwechselkrankheiten 20: 180, 1960

    CAS  Google Scholar 

  37. Yasue S, Handa S, Miyagawa S, Inoue J, Hasegawa A, Yamakawa T: Difference in form of sialic acid in red blood cell glycolipids of different breeds of dogs. J Biochem (Tokyo) 83: 1101, 1978

    CAS  Google Scholar 

  38. Tsuji S, Arita M, Nagai Y: GQ1 b, a bioactive ganglioside that exhibits novel nerve growth factor (NGF)-like activities in the two neuroblastoma cell lines. J Biochem (Tokyo) 94:303, 1 983

    Google Scholar 

  39. Tsuji S, Arita M, Nagai Y: GQ1 b, a bioactive ganglioside that exhibits novel nerve growth factor (NGF)-like activities in the two neuroblastoma cell lines. J Biochem (Tokyo) 94:303, 1 983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this paper

Cite this paper

Saito, M., Nojiri, H., Miura, Y. (1986). Glycosphingolipids as Specific Differentiation-Markers and Differentiation-Inducers for Human Myelogenous Leukemia Cells: A Monosialyl Glycosphingolipid, Ganglioside GM3, is Highly Potent for Induction of Monocytic Differentiation of Human Myeloid and Monocytoid Cell Lines, HL-60 and U937 Cells. In: Baum, S.J., Pluznik, D.H., Rozenszajn, L.A. (eds) Experimental Hematology Today—1985. Experimental Hematology Today, vol 1985. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4920-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4920-7_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96273-3

  • Online ISBN: 978-1-4612-4920-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics