Skip to main content

Vector Quantization

  • Chapter
Communications and Networks

Abstract

Quantization is of ubiquitous need in information-processing systems. We typically model information-bearing signals as being analog in nature, while most of our processing of the signals is digital. As examples, consider the following. Digital communication systems encode samples of an input signal into a bit stream of finite length: finite due to bandwidth constraints. Various signal-processing techniques have their mathematical operations implemented on digital computers, finite binary representations being used for the data values. Hence an efficient method of transforming continuously valued signals into discretely valued signals is both desirable and necessary to ensure good system performance. Often such signals exist on a continuum of time. Here, however, we will assume that a sampling of the signal has already occurred and will employ the information-theoretic model of a discrete-time, continuously valued vector random process. With this assumption, the problem of interest is to in some way decide how to “round” a vector observation to one of N values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Gersho, Principles of quantization, IEEE Trans. Circ. Sys., Vol. CAS-25, pp. 427–437, 1978.

    Article  Google Scholar 

  2. J. Max, Quantizing for minimum distortion, IEEE Trans. Inform. Theory, Vol. IT-6, pp. 7–12, 1960.

    Article  MathSciNet  Google Scholar 

  3. E.F. Abaya and G.L. Wise, Convergence of vector quantizers with applications to the design of optimal quantizers, Proc. Allerton Conf. Comm. Cont. Comp., University of Illinois, pp. 79–88, 1981.

    Google Scholar 

  4. E.F. Abaya and G.L. Wise, On the existence of optimal quantizers, IEEE Trans. Inform. Theory, Vol. IT-28, pp. 937–940, 1982.

    Article  MathSciNet  Google Scholar 

  5. D.T.S. Chen, On two or more dimensional optimum quantizers, IEEE Int’l Conf ASSP, pp. 540–643, 1977.

    Google Scholar 

  6. N.C. Gallagher and J.A. Bucklew, Properties of minimum mean square error block quantizers, IEEE Trans. Inform. Theory, Vol. IT-28, pp. 105–107, 1982.

    Article  Google Scholar 

  7. Gersho, On the structure of vector quantizers, IEEE Trans. Inform. Theory, Vol. IT-28, pp. 157–166, 1982.

    Google Scholar 

  8. R.M. Gray, J.C. Kieffer and Y. Linde, Locally optimum block quantizer design, Inform. Cont.,Vol. 45, pp. 178–198, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  9. Y. Linde, A. Buzo and R.M. Gray, An algorithm for vector quantizer design, IEEE Trans. Comm., Vol. COM-28, pp. 84–95, 1980.

    Article  Google Scholar 

  10. J. Menez, F. Boeri and D.J. Esteban, Optimum quantizer algorithm for real time block quantizing, Proc. Int’l Conf. ASSP, pp. 980–984, 1979.

    Google Scholar 

  11. J.A. Bucklew, Upper bounds to the asymptotic performance of block quantizers, IEEE Trans. Inform. Theory, Vol. IT-27, pp. 577–581, 1981.

    Article  MathSciNet  Google Scholar 

  12. J.A. Bucklew and G.L. Wise, Multidimensional asymptotic quantization theory with r-th power distortion measures, IEEE Trans. Inform. Theory, Vol. IT-28, pp. 239–247, 1982.

    Article  MathSciNet  Google Scholar 

  13. P. Elias, Bounds and asymptotes for the performance of multivariate quantizers, Ann. Math. Statist., Vol. 41, pp. 1249–1259, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Gersho, Asymptotically optimal block quantization, IEEE Trans. Inform. Theory, Vol. IT-25, pp. 373–380, 1979.

    Article  MathSciNet  Google Scholar 

  15. M.P. Schiitzenberger, On the quantization of finite dimensional messages, Inform. Cont., Vol. 1, pp. 153–158, 1958.

    Article  Google Scholar 

  16. Y. Yamada, S. Tazaki and R.M. Gray, Asymptotic performance of block quantizers with difference distortion measures, IEEE Trans. Inform. Theory, Vol. IT-26, pp. 6–14, 1980.

    Article  MathSciNet  Google Scholar 

  17. P. Zador, Development and Evaluation of Procedures for Quantizing Multivariate Distributions, Stanford University Dissertation, Department of Statistics, 1963.

    Google Scholar 

  18. P.L. Zador, Asymptotic quantization error of continuous signals and the quantization dimension, IEEE Trans. Inform. Theory, Vol. IT-28, pp. 139–149, 1982.

    Article  MathSciNet  Google Scholar 

  19. W.R. Bennett, Spectra of quantized signals, Bell Sys. Tech. Jour., Vol. 27 pp. 446–472, 1948.

    Google Scholar 

  20. J.A. Bucklew, Companding and random quantization in several dimensions, IEEE Trans. Inform. Theory, Vol. IT-27, pp. 207–211, 1981.

    Article  MathSciNet  Google Scholar 

  21. J.A. Bucklew, A note on optimal multidimensional compandors, IEEE Trans. Inform. Theory, Vol. IT-29, pp. 279, 1983.

    Article  Google Scholar 

  22. J.H. Conway and N.J.A. Sloane, Voronoi regions of lattices, second moments of polytopes, and quantization, IEEE Trans. Inform. Theory, Vol. IT-28, pp. 211–226, 1982.

    Article  MathSciNet  Google Scholar 

  23. J.H. Conway and N.J.A. Sloane, Fast quantizing and decoding algorithms for lattice quantizers and codes, IEEE Trans. Inform. Theory, Vol. IT-28, pp. 221–226, 1982.

    Google Scholar 

  24. L. Fejes Toth, Sur la representation d’une population infinie par un nombre finie d’elements, Acta Mathematica, Magyar Tudomanyos Aka- demia Budapest, Vol. 10, pp. 299–304, 1959.

    MathSciNet  MATH  Google Scholar 

  25. D.J. Newman, The hexagon theorem, IEEE Trans. Inform. Theory, Vol. IT- 28, pp. 137–139, 1982.

    Article  Google Scholar 

  26. K.D. Rines and N.C. Gallagher, Jr., The design of multidimensional quantizers using prequantization, Proc. Allerton Conf Comm. Cont. Comp., pp. 446–453, 1979.

    Google Scholar 

  27. K.D. Rines and N.C. Gallagher Jr., The design of two dimensional quantizers using prequantization, IEEE Trans. Inform. Theory, Vol. IT-28 pp. 232–239, 1982.

    Article  Google Scholar 

  28. K.D. Rines, N.C. Gallagher Jr. and J.A. Bucklew, Nonuniform multidimensional quantizers, Proc. Princeton Conf. Inform. Sci. Sys., Princeton University, pp. 43–46, 1982.

    Google Scholar 

  29. K. Sayood and J.D. Gibson, An algorithm for designing vector quantizers, Proc. Allerton Conf. Comm., Cont., Comp., pp. 301–310, 1982.

    Google Scholar 

  30. J.A. Bucklew and N.C. Gallagher Jr., Quantization schemes for bivari- ate Gaussian random variables, IEEE Trans. Inform. Theory, Vol. IT- 25, pp. 537–543, 1979.

    Article  MathSciNet  Google Scholar 

  31. J.A. Bucklew and N.C. Gallagher Jr., Two-dimensional quantization of bivariate circularly symmetric densities, IEEE Trans. Inform. Theory, Vol. IT-25, pp. 667–671, 1979.

    Google Scholar 

  32. W.J. Dallas, Magnitude-coupled phase quantization, Appl. Optics, Vol. 13, pp. 2274–2279, 1974.

    Article  Google Scholar 

  33. J.G. Dunn, The performance of a class of n dimensional quantizers for a Gaussian source, Proc. Columbia Symp. Signal Tran., New York, pp. 76–81, 1965.

    Google Scholar 

  34. R.M. Gray and E.D. Karnin, Multiple local optima in vector quantizers, IEEE Trans. Inform. Theory, Vol. IT-28, pp. 256–261, 1982.

    Article  MathSciNet  Google Scholar 

  35. J.J.Y. Huang and P.M. Schultheiss, Block quantization of correlated Gaussian random variables, IEEE Trans. Comm. Sys., Vol. CS-11, pp. 289–296, 1963.

    Article  Google Scholar 

  36. W.A. Pearlman, Polar quantization of a complex Gaussian random variable, IEEE Trans. Comm., Vol. COM-27, pp. 892–899, 1979.

    Article  Google Scholar 

  37. P.F. Swaszek, Further notes on circularly symmetric quantizers, Proc. Conf. Inform. Sci. Sys., Johns Hopkins University, pp. 794 - 800, 1983.

    Google Scholar 

  38. P.F. Swaszek, Uniform spherical coordinate quantizers, Proc. Allerton Conf Comm., Cont. Comp., pp. 491–500, 1983.

    Google Scholar 

  39. P.F. Swaszek and J.B. Thomas, Optimum circularly symmetric quantizers, J. Franklin Inst., Vol. 313, pp. 373 - 384, 1982.

    Article  Google Scholar 

  40. P.F. Swaszek, Asymptotic performance of optimal circularly symmetric quantizers, submitted for publication.

    Google Scholar 

  41. P.F. Swaszek and J.B. Thomas, Multidimensional spherical coordinates quantization, IEEE Trans. Inform. Theory, Vol. IT-28, pp. 570–576, 1983.

    Article  Google Scholar 

  42. P.F. Swaszek and T. Ku, Asymptotic performance of unrestricted polar quantizers, Proc. Princeton Conf Inform. Sci. and Sys., pp. 581–586, 1984.

    Google Scholar 

  43. M. Tasto and P.A. Wintz, Note on the error signal of block quantizers, IEEE Trans. Comm., Vol. COM-21, pp. 216–219, 1973.

    Article  Google Scholar 

  44. S.G. Wilson, Magnitude/phase quantization of independent Gaussian variates, IEEE Trans. Comm., Vol. COM-28, pp. 1924–1929, 1980.

    Article  Google Scholar 

  45. A. Buzo, A.H. Gray, Jr., R.M. Gray and J.D. Markel, Speech coding based upon vector quantization, IEEE Trans. A.oust., Speech, Sig. Proc., Vol. ASSP-28, pp. 562–574, 1980.

    Article  MathSciNet  Google Scholar 

  46. N.C. Gallagher, Jr., Quantizing schemes for the discrete Fourier transform of a random time series, IEEE Trans. Inform. Theory, Vol. IT-24, pp. 156–163, 1978.

    Article  MathSciNet  Google Scholar 

  47. A. Habibi and P.A. Wintz, Image coding by linear transformation and block quantization, IEEE Trans. Comm., Vol. COM-19, pp. 50–62, 1971.

    Article  Google Scholar 

  48. J. MacQueen, Some methods for classification and analysis of multivariate observations, Proc. 5th Berkeley Symp. Math. Stat, and Prob., Vol. 1, Berkeley, CA: Univ. of California Press, pp. 281–297, 1967.

    Google Scholar 

  49. W.A. Pearlman, Optimum fixed level quantization of the DFT of achromatic images, Proc. Allerton Conf. Comm. Cont. and Comp., pp. 313–319, 1979.

    Google Scholar 

  50. D. Pollard, Quantization and the method of k-means, IEEE Trans. Inform. Theory, Vol. IT-28, pp. 199–205, 1982.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Swaszek, P.F. (1986). Vector Quantization. In: Blake, I.F., Poor, H.V. (eds) Communications and Networks. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4904-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4904-7_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9354-5

  • Online ISBN: 978-1-4612-4904-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics