Studies on the Structure and Function of Ribosomal RNA

  • H. F. Noller
  • M. Asire
  • A. Barta
  • S. Douthwaite
  • T. Goldstein
  • R. R. Gutell
  • D. Moazed
  • J. Normanly
  • J. B. Prince
  • S. Stern
  • K. Triman
  • S. Turner
  • B. Van Stolk
  • V. Wheaton
  • B. Weiser
  • C. R. Woese
Part of the Springer Series in Molecular Biology book series (SSMOL)

Abstract

Our understanding of the structure and function of ribosomal RNA has evolved rapidly during the past few years. Complete primary structures for 16S, 23S, and 5S rRNA (and their analogs) from a wide range of organisms and organelles are now available, as are accurate secondary structure models that are helping us to understand the higher order folding of these molecules (reviewed in Woese et al., 1983; Brimacombe et al., 1983; Ebel et al., 1983; Noller, 1984). Current efforts in this area are focused on understanding tertiary and quaternary structure of rRNA and the nature of its involvement in protein synthesis.

Keywords

Codon Aspergillus Adenine Pyrimidine Erythromycin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barta, A., Steiner, G., Brosius, J., Noller, H.F., Kuechler, E. (1984). Identification of a site on 23S ribosomal RNA located at the peptidyl transferase center. Proc. Nat. Acad. Sci. USA 81: 3607–3611.PubMedCrossRefGoogle Scholar
  2. Brimacombe, R., Maly, P., Zwieb, C. (1983). The structure of ribosomal RNA and its organization relative to ribosomal protein. Prog. Nucleic Acid Res. Mol. Biol 28: 1–48.PubMedCrossRefGoogle Scholar
  3. Celma, M.L., Monro, R.E., Vazquez, D. (1970). Substrate and antibiotic binding sites at the peptidyl transferase centre of E. coli ribosomes. FEBS Lett. 6: 273–277.CrossRefGoogle Scholar
  4. Conner, B., Takano, T., Tanaka, S., Itakura, K., Dickerson, R.E. (1982). The molecular structure of d(ICpCpGpG), a fragment of right-handed double helical A-DNA. Nature 295: 294–299.PubMedCrossRefGoogle Scholar
  5. Crick, F.H.C. (1968). The origin of the genetic code. J. Mol. Biol 38: 367–379.PubMedCrossRefGoogle Scholar
  6. Douthwaite, S., Christensen, A., Garrett, R.A. (1983). Higher order structure in the 3′-minor domain of small subunit ribosomal RNAs from a gram negative bacterium, a gram positive bacterium and a eukaryote. J. Mol. Biol 169: 249–279.PubMedCrossRefGoogle Scholar
  7. Douthwaite, S., Prince, J.B., Noller, H.F. (1985). Evidence for functional interaction between domains II and V of 23 S ribosomal RNA from an erythromycin-resistant mutant. Proc. Nat. Acad. Sci. USA 82: 8330–8334.PubMedCrossRefGoogle Scholar
  8. Dubin, D.T., Hsu Chen, C.C. (1983). The 3′-terminal region of mosquito mitochondrial small ribosomal subunit RNA: sequence and localization of methylated residues. Plasmid 9: 307–320.PubMedCrossRefGoogle Scholar
  9. Ebel, J.P., Branlant, C., Carbon, P., Ehresmann, B., Ehresmann, C., Krol, A., Stiegler, P. (1983). In Structure, Dynamics, Interactions and Evolution of Biological Macromolecules, ed. Helene, C. D. Reidel, Boston, pp. 177–193.Google Scholar
  10. Eperon, I.C., Janssen, J.W.G., Hoeijmakers, J.H., Borst, P. (1983). The major transcripts of the kinetoplast DNA of Trypanosoma brucei are very small ribosomal RNAs. Nucl. Acids Res 11: 105–125.PubMedCrossRefGoogle Scholar
  11. Fox, G.F., Woese, C.R. (1975). 5S RNA secondary structure. Nature 256: 505–507.Google Scholar
  12. Ginzburg, I., Miskin, R., Zamir, A. (1973). N-ethyl maleimide as a probe for the study of functional sites and conformations of 30S ribosomal subunits. J. Mol. Biol 79: 481–494.PubMedCrossRefGoogle Scholar
  13. Grosjean, H.J., de Henau, S., Crothers, D.M. (1978). On the physical basis for ambiguity in genetic coding interactions. Proc. Nat. Acad. Sci. USA 75: 610–614.Google Scholar
  14. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N., Altman, S. (1983). The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35: 849–857.PubMedCrossRefGoogle Scholar
  15. Gutell, R.R., Weiser, B., Woese, C.R., Noller, H.F. (1985). Comparative anatomy of 16S-like ribosomal RNA. Prog. Nucl. Acid Res. Mol. Biol 32: 156–216.Google Scholar
  16. Hogan, J.H., and Noller, H.F. (1978). Altered topography of 16S RNA in the inactive form of Escherichia coli 30S ribosomal subunits. Biochem. 17: 587–593.CrossRefGoogle Scholar
  17. Köchel, H.G., Küntzel, H. (1981). Nucleotide sequence of the Aspergillus nidulans mitochondrial gene coding for the small ribosomal subunit RNA. Nucl. Acids Res 9: 5689–5696.PubMedCrossRefGoogle Scholar
  18. Kruger, K., Grabowski, P.J., Zaug, A., Sands, J., Gottschling, D.E., Cech, T.R. (1982). Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31: 147–157.PubMedCrossRefGoogle Scholar
  19. Levitt, M. (1969). Detailed molecular model for transfer ribonucleic acid. Nature 224: 759–763.PubMedCrossRefGoogle Scholar
  20. Li, M., Tzagoloff, A., Underbrink-Lyon, K., Martin, N.C. (1982). Identification of the paromomycin resistance mutation in the 15S rRNA of yeast mitochondria. J. Biol. Chem 257: 5921–5928.PubMedGoogle Scholar
  21. Moazed, D., Stern, S., Noller, H.F. (1986a). Rapid chemical probing of conformation in 16S rRNA and 30S subunits using primer extension. J. Mol. Biol 187: 399–416.PubMedCrossRefGoogle Scholar
  22. Moazed, D., Van Stolk, B., Douthwaite, S., Noller, H.F. (1986b). (submitted for publication). Noller, H.F. (1974). Topography of 16S RNA in 30S ribosomal subunits. Nucleotide sequences and location of sites of reaction with kethoxal. Biochem 13: 4694–4703.Google Scholar
  23. Noller, H.F. (1979) Structure and topography of ribosomal RNA. In Ribosomes, eds. Chambliss, G., et al., University Park Press, Baltimore, pp. 3–22.Google Scholar
  24. Noller, H.F. (1984). Structure of ribosomal RNA. Ann. Rev. Biochem 53: 119–162.PubMedCrossRefGoogle Scholar
  25. Noller, H.F., Woese, C.R. (1981). Secondary structure of 16S ribosomal RNA. Science 212: 403–411.PubMedCrossRefGoogle Scholar
  26. Noller, H.F., Kop, J., Wheaton, V., Brosius, J., Guteil, R.R., Kopylov, A.M., Dohme, F., Herr, W., Stahl, D.A., Gupta, R., Woese, C.R. (1981). Secondary structure model for 23S ribosomal RNA. Nucl. Acids Res 9: 6167–6189.PubMedCrossRefGoogle Scholar
  27. Ofengand, J., Liou, R., Kohut, J., Schwartz, I., Zimmermann, R.A. (1979). Covalent cross-linking of transfer RNA to the ribosomal P site. Mechanism and site of reaction in transfer RNA. Biochem. 18: 4322–4332.CrossRefGoogle Scholar
  28. Ofengand, J., Liou, R. (1981). Correct codon-anticodon base pairing at the 5′-anticodon position blocks covalent cross-linking between tRNA and 16S RNA at the ribosomal P site. Biochem. 20: 552–559.CrossRefGoogle Scholar
  29. Ofengand, J., Gornicki, P., Chakraburtty, K., Nurse, K. (1982). Functional conservation near the 3′ end of eukaryotic small subunit RNA: photochemical crosslinking of P site-bound acetylvalyl-tRNA to 18S RNA of yeast ribosomes. Proc. Nat. Acad. Sci. USA 79: 2817–2821.PubMedCrossRefGoogle Scholar
  30. Peattie, D.A., Gilbert, W. (1980). Chemical probes for higher-order structure in RNA. Proc. Nat. Acad. Sci. USA 77: 4679–4682.PubMedCrossRefGoogle Scholar
  31. Prince, J.B., Taylor, B.H., Thurlow, D.L., Ofengand, J., Zimmermann, R.A. (1982). Covalent crosslinking of tRNA1Val to 16S RNA at the ribosomal P site: identification of crosslinked residues. Proc. Nat. Acad. Sci. USA 79: 5450–5454.PubMedCrossRefGoogle Scholar
  32. Rich, A. (1974) How transfer RNA may move inside the ribosome. In Ribosomes, eds. Nomura, A., Tissieres, A., Lengyel, P. Cold Spring Harbor, New York, pp. 871–884.Google Scholar
  33. Rich, A., Raj Bhandary, U.L. (1976). Transfer RNA: molecular structure, sequence and properties. Ann. Rev. Biochem 45: 805–860.PubMedCrossRefGoogle Scholar
  34. Schwartz, I., Ofengand, J., (1978). Photochemical cross-linking of unmodified ace-tylvalyl-tRNA to 16S RNA at the ribosomal P site. Biochem. 17: 2524–2530.CrossRefGoogle Scholar
  35. Seilhammer, J., Olsen, G.J., Cummings, D.J. (1984). Paramecium mitochondrial genes. I. Small subunit rRNA sequence and microevolution. J. Biol. Chem 259: 5167–5172.Google Scholar
  36. Sigmund, C.D., Ettayebi, M., Morgan, E.A. (1984). Antibiotic resistance mutations in the 16S and 23S ribosomal RNA genes of Escherichia coli. Nucl. Acids. Res 12: 4653–4663.PubMedCrossRefGoogle Scholar
  37. Sor, F., Fukuhara, H. (1980). Nucleotide sequence of the genes for the mitochondrial 15S ribosomal RNA of yeast. C.R. Acad. Sci. Paris 291: 933–936.Google Scholar
  38. Sor, F., Fukuhara, H. (1982). Identification of two erythromycin resistance mutations in the mitochondrial gene coding for the large ribosomal RNA in yeast. Nucl. Acids Res 10: 6571–6577.PubMedCrossRefGoogle Scholar
  39. Stiege, W., Glotz, C., Brimacombe, R. (1983). Localisation of a series of intra-RNA cross-links in the secondary structure of 23S RNA induced by ultraviolet irradiation of Escherichia coli 50S ribosomal subunits. Nucl. Acids. Res 11: 1687–1706.PubMedCrossRefGoogle Scholar
  40. Tinoco, I., Borer, P.N., Dengler, B., Levine, M.D., Uhlenbeck, O.C., Crothers, D.M., Gralla, J. (1973). Improved estimation of secondary structure in ribonucleic acids. Nature New Biol. 246: 40–41.PubMedGoogle Scholar
  41. Van Stolk, B.J., Noller, H.F. (1984). Chemical probing of conformation in large RNA molecules. Analysis of 16S ribosomal RNA using diethylpyrocarbonate. J. Mol. Biol 180: 151–177.PubMedCrossRefGoogle Scholar
  42. Woese, C.R. (1970). Molecular mechanics of translation: a reciprocating ratchet mechanism. Nature 226: 817–820.PubMedCrossRefGoogle Scholar
  43. Woese, C.R. (1979). Just-so stories and Rube Goldberg machines: speculations on the origin of the protein synthetic machinery. In Ribosomes, eds. Chambliss, G., et al., University Park Press, Baltimore, pp. 357–373.Google Scholar
  44. Woese, C.R., Gutell, R.R., Gupta, R., Noller, H.F. (1983). A detailed analysis of the higher-order structure of 16S-like ribosomal RNAs. Microbiol. Rev 47: 621–669.PubMedGoogle Scholar
  45. Youvan, D.C., Hearst, J.E. (1979). Reverse transcriptase pauses at N2-methylguanine during in vitro transcription of Escherichia coli 16S ribosomal RNA. Proc. Nat. Acad. Sci. USA 76: 3751–3754.PubMedCrossRefGoogle Scholar
  46. Zamir, A., Miskin, R., Elson, D. (1971). Inactivation and reactivation of ribosomal subunits: aminoacyl-transfer RNA binding activity of the 30S subunit of Escherichia coli. J. Mol. Bol 60: 347–364.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • H. F. Noller
  • M. Asire
  • A. Barta
  • S. Douthwaite
  • T. Goldstein
  • R. R. Gutell
  • D. Moazed
  • J. Normanly
  • J. B. Prince
  • S. Stern
  • K. Triman
  • S. Turner
  • B. Van Stolk
  • V. Wheaton
  • B. Weiser
  • C. R. Woese

There are no affiliations available

Personalised recommendations