Structure and Expression of Ribosomal Protein Genes in Yeast

  • R. J. Planta
  • W. H. Mager
  • R. J. Leer
  • L. P. Woudt
  • H. A. Raué
  • T. T. A. L. El-Baradi
Part of the Springer Series in Molecular Biology book series (SSMOL)


Yeast ribosomes consist of four RNA molecules and about 75 proteins almost all of which are present in a single copy per ribosome (see for reviews Warner, 1982; Planta and Mager, 1982). For ribosome formation the synchronized production of all these ribosomal constituents is required.


Ribosomal Protein Ribosomal Protein Gene Ribosomal Protein Synthesis Untranslated Leader Sequence Yeast Ribosomal Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abovich, N., Rosbash, M. (1984). Two genes for ribosomal protein 51 of Saccharo- myces cerevisiae complement and contribute to the ribosomes. Mol. Cell. Biol. 4: 1871–1879.PubMedGoogle Scholar
  2. Ammerer, G., Hitzeman, R., Hagie, F., Barta, A., Hall, B.D. (1981). In: Recombinant DNA, ed. Walton, A.G. Elsevier Scientific Publishing Co., Amsterdam, pp. 185–197.Google Scholar
  3. Bollen, G.H.P.M., Cohen, L.H., Mager, W.H., Klaassen, A.W., Planta, R.J. (1981a). Isolation of cloned ribosomal protein genes from the yeast Saccharomyces carlsbergensis. Gene 14: 279–287.PubMedCrossRefGoogle Scholar
  4. Bollen, G.H.P.M., Mager, W.H., Planta, R.J. (1981b). High resolution mini-two- dimensional gel electrophoresis of yeast ribosomal proteins. Mol. Biol. Rep. 8: 37–44.PubMedCrossRefGoogle Scholar
  5. Bollen, G.H.P.M., Molenaar, C.M.T., Cohen, L.H., van Raamsdonk-Duin, M.M.C., Mager, W.H., Planta, R.J. (1982). Ribosomal protein genes of yeast contain intervening sequences. Gene 18: 29–38.PubMedCrossRefGoogle Scholar
  6. Branlant, C., Krol, A., Machatt, M.A., Pouyet, J., Ebel, J.-P., Edwards, K., Kossel, H. (1981). Primary and secondary structures of Escherichia coli MRE600 23S ribosomal RNA. Comparison with models of secondary structure for maize chloroplast 23S rRNA and for large portions of mouse and human 16S mitochondrial rRNAs. Nucl. Acids Res. 9: 4303–4324.PubMedCrossRefGoogle Scholar
  7. Brimacombe, R., Maly, P., Zwieb, C. (1983). The structure of ribosomal RNA and its organization relative to ribosomal protein. Progr. Nucl. Acid Res. Mol. Biol. 28: 1–48.CrossRefGoogle Scholar
  8. Burke, R.L., Tekamp-Olson, P., Najarian, R. (1983). The isolation, characterization and sequence of the pyruvate kinase gene of Saccharomyces cerevisiae. J. Biol. Chem. 258:2193 –2201.Google Scholar
  9. Clark, G.C., Tague, B.W., Ware, V.C, Gerbi, S.A. (1984). Xenopus laevis 28S ribosomal RNA: a secondary structure model and its evolutionary and functional implications. Nucl. Acids Res. 12: 6197 - 6220.PubMedCrossRefGoogle Scholar
  10. Dean, D., Nomura, M. (1982). Genetics and regulation of ribosomal protein synthe¬sis in Escherichia coli. In: The cell nucleus, vol. XII, eds. Busch, H., Rothblum, L., Academic Press Inc., New York, pp. 186–212.Google Scholar
  11. Domdey, H., Apostol, B., Lin, R.J., Newman, A., Brody, E., Abelson, J. (1984). Lariat structures are in vivo intermediates in yeast pre-mRNA splicing. Cell 39: 611–621.PubMedCrossRefGoogle Scholar
  12. El-Baradi, T.T.A.L., Raue, H.A., de Regt, V.C.H.F., Planta, R.J. (1984). Stepwise dissociation of yeast 60S ribosomal subunits by LiCl and identification of L25 as a primary 26S rRNA binding protein. Eur. J. Biochem. 144: 393–400.Google Scholar
  13. El-Baradi, T.T.A.L., Raue, H.A., de Regt, V.C.H.F, Yerbree E.C., Planta, R.J. (1985). Yeast ribosomal protein L25 binds to an evolutionary conserved site on yeast 26S and E. coli rRNA. EMBO J. 4: 2101–2107.Google Scholar
  14. Fitzgerald, M., Shenk, T. (1981). The sequence 5/-AAUAAA-3′ forms part of the recognition site for polyadenylation of late SV40 mRNAs. Cell 24: 251–260.PubMedCrossRefGoogle Scholar
  15. Fried, H.M., Nam, H.G., Loechel, S., Teem, J. (1984). Characterization of yeast strains with conditionally expressed variants of ribosomal protein genes tcm1 and cyh2. Mol. Cell. Biol. 5: 99–108.Google Scholar
  16. Fried, H.M., Pearson, N.J., Kim, C.H., Warner, J.R. (1981). The genes for fifteen ribosomal protein genes of Saccharomyces cerevisiae. J. Biol. Chem. 251: 10176–10183.Google Scholar
  17. Fried, H.M., Warner, J.R. (1981). Cloning of yeast gene for trichodermin resistance and ribosomal protein L3. Proc. Natl. Acad. Sci. USA 78: 238–242.PubMedCrossRefGoogle Scholar
  18. Fried, H.M., Warner, J.R. (1982). Molecular cloning and analysis of yeast gene for cycloheximide resistance and ribosomal protein L29. Nucl. Acids Res. 10: 3133–3148.PubMedCrossRefGoogle Scholar
  19. Fried, H.M., Warner, J.R. (1984). Organization and expression of eukaryotic ribosomal protein genes. In: Recombinant DNA and cell proliferation, eds. Stein, G.S., Stein, J.L. Academic Press Inc., New York, pp. 169–192.Google Scholar
  20. Gourse, R., Thurlow, D.L., Gerbi, S.A., Zimmermann, R.A. (1981). Specific binding of a prokaryotic ribosomal protein to a eukaryotic ribosomal RNA: implications for evolution and autoregulation. Proc. Natl. Acad. Sei. USA 78: 2722–2726.CrossRefGoogle Scholar
  21. Grant, P.G., Schindler, D., Davies, J.E. (1976). Mapping of trichodermin resistance in Saccharomyces cerevisiae: a genetic locus for a component of the 60S ribosomal subunit. Genetics 83: 667–682.PubMedGoogle Scholar
  22. Guarente, L., Hoar, E. (1984). Upstream activation sites of the cycl gene of S. cerevisiae are active when inverted but not when placed downstream of TATA-box. Proc. Natl. Acad. Sei. USA 81: 7860–7864.CrossRefGoogle Scholar
  23. Guarente, L., Lalonde, B., Gifford, P., Alani, E. (1984). Distinctly regulated tandem upstream activation sites mediate catabolite repression of the cycl gene of S. cerevisiae. Cell. 36: 503–511.PubMedCrossRefGoogle Scholar
  24. Hadjiolov, A.A., Georgiev, O.I., Nosikov, V.V., Yavachev, L.P. (1984). Primary and secondary structure of rat ribosomal 28S rRNA. Nucl. Acids Res. 12: 3577–3693.CrossRefGoogle Scholar
  25. Henikoff, S., Kelly, J.D., Cohen, E.H. (1983). Transcription terminates in yeast distal to a control sequence. Cell. 33: 607–614.PubMedCrossRefGoogle Scholar
  26. Himmelfarb, H.J., Vassaratti, A., Friesen, J.D. (1984). Molecular cloning and biosynthetic regulation of the cryl-gene of S. cerevisiae. Mol. Gen. Genet. 195: 500–506.PubMedCrossRefGoogle Scholar
  27. Käufer, N.F., Fried, H.M., Schwindinger, W.F., Jasin, M., Warner, J.R. (1983). Cycloheximide resistance in yeast: the gene and its protein. Nucl. Acids Res. 11: 3123–3135.PubMedCrossRefGoogle Scholar
  28. Kief, D.R., Warner, J.R. (1981). Hierarchy of elements regulating synthesis of ribosomal proteins in Saccharomyces cerevisiae. Mol. Cell. Biol. 1: 1016–1023.PubMedGoogle Scholar
  29. Kim, C.H., Warner, J.R. (1982). Messenger RNA for ribosomal proteins in yeast. J. Mol. Biol. 165: 79–89.CrossRefGoogle Scholar
  30. Kim, C.H., Warner, J.R. (1983). Coordinate transcription of ribosomal protein genes. Mol. Cell. Biol. 3: 457–465.PubMedGoogle Scholar
  31. Langford, C.J., Gallwitz, D. (1983). Evidence for an intron-contained sequence required for the splicing of yeast RNA polll transcripts. Cell 33: 519–527.PubMedCrossRefGoogle Scholar
  32. Langford, C.J., Klinz, F.J., Donath, C., Gallwitz, D. (1984). Point mutations identify the conserved intron-contained TACTAAC box as an essential splicing signal sequence in yeast. Cell 36: 645–653.PubMedCrossRefGoogle Scholar
  33. Larkin, J.C., Woolford, J.L. (1983). Molecular cloning and analysis of the cryl gene: a yeast ribosomal protein gene. Nucl. Acids Res. 11: 403–420.PubMedCrossRefGoogle Scholar
  34. Leer, R.J., van Raamsdonk-Duin, M.M.C., Hagendoorn, M.J.M., Mager, W.H., Planta, R.J. (1984a). Structural comparison of yeast ribosomal protein genes. Nucl. Acids Res. 12: 6685–6700.PubMedCrossRefGoogle Scholar
  35. Leer, R.J., van Raamsdonk-Duin, M.M.C., Kraakman, P., Mager, W.H., Planta, R.J. (1985 a). The genes for yeast ribosomal proteins S24 and L46 are adjacent and divergently transcribed. Nucl. Acids Res. 13: 701–709.Google Scholar
  36. Leer, R.J., van Raamsdonk-Duin, M.M.C., Mager, W.H., Planta, R.J. (1984b). The primary structure of the gene encoding yeast ribosomal protein LI 6. FEBS Lett. 175: 371–376.PubMedCrossRefGoogle Scholar
  37. Leer, R.J., van Raamsdonk-Duin, M.M.C., Molenaar, C.M.T., Cohen, L.H., Mager, W.H., Planta, R.J. (1982). The structure of the gene coding for the phosphorylated ribosomal protein S10 in yeast. Nucl. Acids Res. 10: 5869–5878.PubMedCrossRefGoogle Scholar
  38. Leer, R.J., van Raamsdonk-Duin, M.M.C., Schoppink, P.J., Cornelissen, M.T.E., Cohen, L.H., Mager, W.H., Planta, R.J. (1983). Yeast ribosomal protein S33 is encoded by an unsplit gene. Nucl. Acids Res. 11: 7759–7768.PubMedCrossRefGoogle Scholar
  39. Leer, R.J., van Raamsdonk-Duin, M.M.C., Mager, W.H., Planta, R.J. (1985b). Conserved sequences upstream of yeast ribosomal protein genes. Curr. Genet. 9: 273–277.PubMedCrossRefGoogle Scholar
  40. Leer, R.J., van Raamsdonk-Duin, M.M.C., Molenaar, C.M.T., Witsenboer, M.A., Mager, W.H., Planta, R.J. (1985c). Yeast contains two functional genes for ribosomal protein S10. Nucl. Acids Res. 13: 5027–5039.PubMedCrossRefGoogle Scholar
  41. Lin, A., McNally, J., Wool, I.G. (1984). The primary structure of rat liver ribosomal protein L39. J. Biol. Chem. 259: 487–490.PubMedGoogle Scholar
  42. Michel, S., Traut, R.R., Lee, J.C. (1983). Yeast ribosomal proteins: electrophoretic analysis in four two-dimensional gel systems—correlation of nomenclature. Mol. Gen. Genet. 191: 251–256.CrossRefGoogle Scholar
  43. Michot, B., Hassouna, M., Bachellerie, J.-P. (1984). Secondary structure of mouse 28S rRNA and general model for the folding of the large rRNA in eukaryotes. Nucl. Acids Res. 12: 4259–4279.PubMedCrossRefGoogle Scholar
  44. Mitra, G., Warner, J.R. (1984). A yeast ribosomal protein gene whose intron is in the 5′ leader. J. Biol. Chem. 259: 9218–9224.PubMedGoogle Scholar
  45. Molenaar, C.M.T. (1984). Organization and structure of yeast ribosomal protein genes. Ph.D. Thesis, Free University, Amsterdam.Google Scholar
  46. Molenaar, C.M.T., Woudt, L.P., Jansen, A.E.M., Mager, W.H., Planta, R.J., Donovan, D.H., Pearson, N.J. (1984). Structure and organization of two linked ribosomal protein genes in yeast. Nucl. Acids Res. 12: 7345–7358.PubMedCrossRefGoogle Scholar
  47. Mortimer, R., Hawthorne, D. (1966). Genetic mapping in Saccharomyces. Genetics 53: 165–172.PubMedGoogle Scholar
  48. Mount, S.M. (1982). A catalogue of splice junction sequences. Nucl. Acids Res. 10: 459–527.PubMedCrossRefGoogle Scholar
  49. Nieuwint, R.T.M., Molenaar, C.M.T., van Bommel, J.H., van Raamsdonk-Duin, M.M.C., Mager, W.H., Planta, R.J. (1985). The gene for yeast ribosomal protein S31 contains an intron in the leader sequence. Curr. Genet. 10: 1–5.PubMedCrossRefGoogle Scholar
  50. Noller, H.F. (1984). Structure of ribosomal RNA. Ann. Rev. Biochem. 53: 119–162.PubMedCrossRefGoogle Scholar
  51. Otaka, E., Osawa, S. (1981). Yeast ribosomal proteins. V. Correlation of several nomenclatures and proposal of a standard nomenclature. Mol. Gen. Genet. 181: 176–182.CrossRefGoogle Scholar
  52. Otsuka, T., Nomiyama, H., Yoshida, H., Kukita, T., Kuhara, S., Sakoki, Y. (1983). Complete nucleotide sequence of the 26S rRNA gene of Physarum polycephalum. Its significance in gene evolution. Proc. Natl. Acad. Sci. USA 80: 3163–3167.PubMedCrossRefGoogle Scholar
  53. Pearson, N.J., Fried, H.M., Warner, J.R. (1982). Yeast use translational control to compensate for extra copies of a ribosomal protein gene. Cell 29: 347–355.PubMedCrossRefGoogle Scholar
  54. Pikielny, C.W., Teem, J.L., Rosbash, M. (1983). Evidence for the biochemical role of an internal sequence in yeast nuclear mRNA introns: implications for U1 RNA and metazoan mRNA splicing. Cell 34: 395–403.PubMedCrossRefGoogle Scholar
  55. Planta, R.J., Mager, W.H. (1982). Ribosomal protein genes in yeast. In: The cell nucleus, vol. XII, eds. Busch, H., Rothblum, L. Academic Press, New York, pp. 213–226.Google Scholar
  56. Rodriguez, J.R., Pikielny, C.W., Rosbash, M. (1984). In vivo characterization of yeast mRNA processing intermediates. Cell. 39: 603–610.PubMedCrossRefGoogle Scholar
  57. Schaap, P.J., Molenaar, C.M.T., Mager, W.H., Planta, R.J. (1984). The primary structure of a gene encoding yeast ribosomal protein L34. Curr. Genet. 9: 47–52.CrossRefGoogle Scholar
  58. Schultz, L.D., Friesen, J.D. (1983). Nucleotide sequence of the tcml gene (ribosomal protein L3) of Saccharomyces cerevisiae. J. Bact. 155: 8–14.PubMedGoogle Scholar
  59. Skogerson, L., McLaughlin, C., Watakama, E. (1973). Modification of ribosomes in cryptopleurin-resistant mutants of yeast. J. Bact. 116: 808–812.Google Scholar
  60. Struhl, K. (1984). Genetic properties and chromatin structure of the yeast gal regulatory element; an enhancer-like sequence. Proc. Natl. Acad. Sei. USA 81: 7865–7869.CrossRefGoogle Scholar
  61. Teem, J.L., Abovich, N., Käufer, N.F., Schwindinger, W.F., Warner, J.R., Levy, A., Woolford, J., Leer, R.J., van Raamsdonk-Duin, M.M.C., Mager, W.H., Planta, R.J., Schultz, L., Friesen, J.D., Fried, H., Rosbash, M. (1984). A comparison of yeast ribosomal protein gene DNA sequences. Nucl. Acids Res. 12: 8295–8312.PubMedCrossRefGoogle Scholar
  62. Teem, J.L., Rosbash, M. (1983). Expression of a β-galactosidase gene containing the ribosomal protein 51 intron is sensitive to the rna2 mutation of yeast. Proc. Natl. Acad. Sei. USA 80: 4403–4407.CrossRefGoogle Scholar
  63. Udem, S.A., Warner, J.R. (1972). Synthesis and processing of ribosomal RNA in S. cerevisiae. J. Mol. Biol. 65: 227–242.PubMedCrossRefGoogle Scholar
  64. Veldman, G.M., Klootwijk, J, de Regt, V.C.H.F., Planta, R.J., Branlant, C, Krol, A., Ebel, J.-P. (1981). The primary and secondary structure of yeast 26S rRNA. Nucl. Acids Res. 9: 6935–6952.PubMedCrossRefGoogle Scholar
  65. Vester, B., Garrett, R.A. (1984). Structure of a protein L23-RNA complex located at the A-site domain of the ribosomal peptidyl transferase centre. J. Mol. Biol. 179: 431–452.PubMedCrossRefGoogle Scholar
  66. Warner, J.R. (1982). The yeast ribosome: structure, function and synthesis. In: The molecular biology of the yeast Saccharomyces, eds. Strathern, J.N., et al. Cold Spring Harbor Laboratory, New York, pp. 529–560.Google Scholar
  67. Warner, J.R., Gorenstein, C.G. (1978). The ribosomal proteins of Saccharomyces cerevisiae. In: Methods in Cell Biology XX, ed. Prescott, D., Acad. Press, New York, pp. 45–60.CrossRefGoogle Scholar
  68. Wettenhall, R.E.H., Cohen, P. (1982). Isolation and characterization of cyclic AMP-dependent phosphorylation sites from rat liver ribosomal protein S6. FEBS Lett. 140: 263–269.PubMedCrossRefGoogle Scholar
  69. Wittmann-Liebold, B., Geissler, A.W., Lin, A., Wool, I.G. (1979). Sequence of the amino-terminal region of rat liver ribosomal proteins S4, S6, S8, L6, L7a, L18, L27, L30, L37, L37a, and L39. J. Supramol. Struct. 12: 425–433.PubMedCrossRefGoogle Scholar
  70. Woolford, J.L., Hereford, L.M., Rosbash, M. (1979). Isolation of cloned DNA sequences containing ribosomal protein genes from Saccharomyces cerevisiae. Cell 18: 1247–1259.PubMedCrossRefGoogle Scholar
  71. Woolford, J.L., Rosbash, M. (1981). Ribosomal protein genes rp39 (10-78), rp39 (11-40), rp51 and rp52 are not contiguous to other ribosomal protein genes in the Saccharomyces cerevisiae genome. Nucl. Acids Res. 9: 5021–5028.PubMedCrossRefGoogle Scholar
  72. Zaret, K.S., Sherman, F. (1982). DNA sequence required for efficient transcription termination in yeast. Cell 28: 563–573.PubMedCrossRefGoogle Scholar
  73. Zimmermann, R.A. (1980). Interactions among protein and rRNA components of the ribosome. In: Ribosomes: Structure, function and genetics, eds. Chambliss, G., et al. University Park Press, Baltimore, pp. 135–169.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • R. J. Planta
  • W. H. Mager
  • R. J. Leer
  • L. P. Woudt
  • H. A. Raué
  • T. T. A. L. El-Baradi

There are no affiliations available

Personalised recommendations