Skip to main content

Involvement of Specific Portions of Ribosomal RNA in Defined Ribosomal Functions: A Study Utilizing Antibiotics

  • Chapter
Structure, Function, and Genetics of Ribosomes

Part of the book series: Springer Series in Molecular Biology ((SSMOL))

Abstract

Quite a number of antibiotics inhibit protein synthesis by binding directly to ribosomes, and, in a few such cases, it is known with reasonable certainty which of the partial reactions of protein synthesis they affect. On the other hand, except for puromycin, we have almost no idea how the drugs actually achieve this, which reflects our state of knowledge concerning how ribosomes themselves work. Nevertheless, it ought to be possible to use inhibitors of protein synthesis to help unravel the details of ribosomal structure—function relationships, in much the same way that other inhibitors were used when pathways of intermediary metabolism were first elucidated. In the case of the ribosome, the challenge is particularly stimulating given the complexity of its structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman, S. (1984). Aspects of biochemical catalysis. Cell 36: 237–239.

    Article  PubMed  CAS  Google Scholar 

  • Beauclerk, A.A.D., Cundliffe, E., Dijk, J. (1984). The binding site for ribosomal protein complex L8 within 23S ribosomal RNA of Escherichia coli. J. Biol. Chem. 259: 6559–6563.

    PubMed  CAS  Google Scholar 

  • Choi, E.C.C., Nishimura, T., Tanaka, Y., Tanaka, N. (1980). In vivo and in vitro cross-resistance of kanamycin-resistant mutants of E. coli to other aminoglycoside antibiotics. J. Antibiot. 33: 1527–1531.

    CAS  Google Scholar 

  • Cooperman, B.S. (1980). Functional sites on the E. coli ribosome as defined by affinity labeling. In: Ribosomes. Structure, function and genetics, eds. Chambliss, G., et al. University Park Press, Baltimore, pp. 531–554.

    Google Scholar 

  • Cundliffe, E. (1980). Antibiotics and prokaryotic ribosomes: action interaction and resistance. In: Ribosomes. Structure, function and genetics, eds. Chambliss, G., et al. University Park Press, Baltimore, pp. 555–581.

    Google Scholar 

  • Cundliffe, E. (1984). Self defence in antibiotic-producing organisms. Brit. Med. Bull. 40: 61–67.

    PubMed  CAS  Google Scholar 

  • Davies, J., Davis, B.D. (1968). Misreading of ribonucleic acid code words induced by aminoglycoside antibiotics. The effect of drug concentration. J. Biol. Chem. 243: 3312–3316.

    PubMed  CAS  Google Scholar 

  • Davies, J., Gorini, L., Davis, B.D. (1965). Misreading of RNA codewords induced by aminoglycoside antibiotics. Mol. Pharmacol. 1: 93–106.

    PubMed  CAS  Google Scholar 

  • Gale, E.F., Cundliffe, E., Reynolds, P.E., Richmond, M.H., Waring, M.J. (1981). The molecular basis of antibiotic action. John Wiley and Sons, London and New York.

    Google Scholar 

  • Greenwell, P., Harris, R.J., Symons, R.H. (1974). Affinity labelling of 23S ribosomal RNA in the active centre of Escherichia coli peptidyl transferase. Eur. J. Biochem. 49: 539–554.

    Article  PubMed  CAS  Google Scholar 

  • Highland, J.H., Howard, G.A., Ochsner, E., Stöffler, G., Hasenbank, R., Gordon, J. (1975). Identification of a ribosomal protein necessary for thiostrepton binding to E. coli ribosomes. J. Biol. Chem. 250: 1141–1145.

    CAS  Google Scholar 

  • Jelenc, P.C., Kurland, C.G. (1984). Multiple effects of kanamycin on translational accuracy. Mol. Gen. Genet. 194: 195–199.

    Article  PubMed  CAS  Google Scholar 

  • LeGoffic, F., Tangy, F., Moreau, B., Capmau, M.-L. (1979). Binding of tobramycin to Escherichia coli ribosomes: characteristics and equilibrium of the reaction. J. Antibiot. 32: 1288–1292.

    CAS  Google Scholar 

  • Li, M., Tzagoloff, A., Underbrink-Lyon, K., Martin, N.C. (1982). Identification of the paromomycin-resistance mutation in the 15S rRNA gene of yeast mitochondria. J. Biol. Chem. 257: 5921–5928.

    PubMed  CAS  Google Scholar 

  • Menninger, J.R., Otto, D.P. (1982). Erythromycin, carbomycin and spiramycin inhibit protein synthesis by stimulating dissociation of peptidyl-tRNA from ribosomes. Antimicrob. Agents Chemother. 21: 811–818.

    CAS  Google Scholar 

  • Misumi, M., Nishimura, T., Komai, T., Tanaka, N. (1978). Interaction of kanamycin and related antibiotics with the large subunit of ribosomes and the inhibition of translocation. Biochem. Biophys. Res. Commun. 84: 358–365.

    Article  CAS  Google Scholar 

  • Moller, W. (1974). The ribosomal components involved in EF G and EF Tu- dependent GTP hydrolysis. In: Ribosomes, eds. Nomura, M., et al., Cold Spring Harbor Laboratory, New York, pp. 711–731.

    Google Scholar 

  • Murakami, T., Nojiri, C., Toyama, H., Hayashi, E., Katumata, K., Anzai, H., Matsuhashi, Y., Yamada, Y., Nagaoka, K. (1983). Cloning of antibiotic-resis-tance genes in Streptomyces. J. Antibiot. 36: 1305–1311.

    PubMed  CAS  Google Scholar 

  • Nakano, M.M., Mashiko, H., Ogawara, H. (1984). Cloning of the kanamycin resistance gene from a kanamycin-producing Streptomyces species. J. Bacteriol. 157: 79–83.

    PubMed  CAS  Google Scholar 

  • Nierhaus, D., Nierhaus, K.H. (1973). Identification of the chloramphenicol-binding protein in Escherichia coli ribosomes by partial reconstitution. Proc. Natl. Acad. Sci. USA 70: 2224–2228.

    Article  PubMed  CAS  Google Scholar 

  • Noller, H.F. (1984). Structure of ribosomal RNA. Ann. Rev. Biochem. 53: 119–162.

    Article  PubMed  CAS  Google Scholar 

  • Noller, H.F., Kop, J., Wheaton, V, Brosius, J., Gutell, R.R., Kopylov, A.M., Dohme, F., Herr, W., Stahl, D.A., Gupta, R., Woese, C.R. (1981). Secondary structure model for 23S ribosomal RNA. Nucl. Acids Res. 9: 6167–6189.

    Article  PubMed  CAS  Google Scholar 

  • Piendl, W., Böck, A., Cundliffe, E. (1984). Involvement of 16S ribosomal RNA in resistance of the aminoglycoside-producers Streptomyces tenjimariensis, Strep- tomyces tenebrarius and Micromonospora purpurea. Mol. Gen. Genet. 197: 24–29.

    Article  PubMed  CAS  Google Scholar 

  • Schreiner, G., Nierhaus, K.H. (1973). Protein involved in the binding of dihydro-streptomycin to ribosomes of Escherichia coli. J. Mol. Biol. 81: 71–82.

    Article  PubMed  CAS  Google Scholar 

  • Sigmund, C.D., Ettayebi, M., Morgan, E.A. (1984). Antibiotic resistance mutations in 16S and 23S ribosomal RNA genes of Escherichia coli. Nucl. Acids Res. 12: 4653–4663.

    Article  PubMed  CAS  Google Scholar 

  • Skeggs, P.A., Thompson, J., Cundliffe, E. (1985). Methylation of 16S ribosomal RNA and resistance to aminoglycoside antibiotics in clones of Streptomyces lividans carrying DNA from Streptomyces tenjimariensis. Mol. Gen. Genet. 200: 415–421.

    Article  PubMed  CAS  Google Scholar 

  • Skinner, R., Cundliffe, E., Schmidt, F.J. (1983). Site of action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. J. Biol. Chem. 258: 12702–12706.

    PubMed  CAS  Google Scholar 

  • Sor, F., Fukuhara, H. (1984). Erythromycin and spiramycin resistance mutations of yeast mitochondria: nature of the rib 2 locus in the large ribosomal RNA gene. Nucl. Acids Res. 12: 8313–8318.

    Article  PubMed  CAS  Google Scholar 

  • Spedding, G., Cundliffe, E. (1984). Identification of the altered ribosomal component responsible for resistance to micrococcin in mutants of Bacillus megaterium. Eur. J. Biochem. 140: 453–459.

    Article  PubMed  CAS  Google Scholar 

  • Stark, M.J.R., Cundliffe, E., Dijk, J., Stöffler, G. (1980). Functional homology between E. coli ribosomal protein Lll and B. megaterium protein BM-L11. Mol. Gen. Genet. 180: 11–15.

    CAS  Google Scholar 

  • Teraoka, H., Nierhaus, K.H. (1978). Proteins from Escherichia coli ribosomes involved in the binding of erythromycin. J. Mol. Biol. 126: 185–193.

    Article  PubMed  CAS  Google Scholar 

  • Teraoka, H., Tanaka, K. (1974). Properties of ribosomes from Streptomyces erythreus and Streptomyces griseus. J. Bacteriol. 120: 316–321.

    PubMed  CAS  Google Scholar 

  • Thompson, J., Cundliffe, E., Stark, M. (1979). Binding of thiostrepton to a complex of 23S rRNA with ribosomal protein Lll. Eur. J. Biochem. 98: 261–265.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J., Schmidt, F., Cundliffe, E. (1982). Site of action of a ribosomal RNA methylase conferring resistance to thiostrepton. J. Biol. Chem. 257: 7915–7917.

    PubMed  CAS  Google Scholar 

  • Thompson, J., Skeggs, P.A., Cundliffe, E. (1985). Methylation of 16S ribosomal RNA and resistance to the aminoglycoside antibiotics gentamicin and kanamycin determined by DNA from the gentamicin-producer, Micromonospora purpurea. Mol. Gen. Genet. 201: 168–173.

    Article  PubMed  CAS  Google Scholar 

  • Weisblum, B. (1975). Altered methylation of ribosomal ribonucleic acid in erythromycin-resistant Staphylococcus aureus. In: Microbiology — 74. American Society for Microbiology, Washington, DC, pp. 199–206.

    Google Scholar 

  • Woese, C.R. (1980). Just so stories and Rube Goldberg machines: speculations on the origin of the protein synthetic machinery. In: Ribosomes. Structure, function and genetics, eds. Chambliss, G., et al. University Park Press, Baltimore, pp. 357–373.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Cundliffe, E. (1986). Involvement of Specific Portions of Ribosomal RNA in Defined Ribosomal Functions: A Study Utilizing Antibiotics. In: Hardesty, B., Kramer, G. (eds) Structure, Function, and Genetics of Ribosomes. Springer Series in Molecular Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4884-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4884-2_34

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9346-0

  • Online ISBN: 978-1-4612-4884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics