Ribosomal Proteins Tune Rate and Accuracy in Translation

  • M. Ehrenberg
  • D. Andersson
  • K. Bohman
  • P. Jelenc
  • T. Ruusala
  • C. G. Kurland
Part of the Springer Series in Molecular Biology book series (SSMOL)


Growing bacteria use a significant fraction of their investments in phosphodiester bonds and peptide bonds for the translation apparatus (Maaløe, 1979; Ingraham et al., 1983). These major investments in ribosomes and other proteins directly involved in translation appear to guarantee a fast growth rate under varying conditions (Maaløe, 1979; Ingraham et al., 1983). In spite of the impressive size of the ribosomal particle in Escherichia coli (Maaløe, 1979) and in spite of its occurrence in very high copy-numbers (Neidhardt et al., 1977), its role in gene expression somehow does not seem to correspond to its complexity.


Ribosomal Protein Ternary Complex Elongation Rate Selection Step Translation Apparatus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson, D.I., Kurland, C.G. (1983). Ram ribosomes are defective proofreaders. Mol. Gen. Genet. 191: 378–381.PubMedCrossRefGoogle Scholar
  2. Biswas, D.K., Gorini, L. (1972). Restriction, derestriction, and mistranslation in missense suppression. Ribosomal discrimination of transfer RNAs. J. Mol. Biol. 64: 119–134.PubMedCrossRefGoogle Scholar
  3. Blomberg, C., Ehrenberg, M., Kurland, C.G. (1980). Free energy dissipation constraints on the accuracy of enzymatic selections. Quart. Rev. Biophys. 13: 231–254.CrossRefGoogle Scholar
  4. Bohman, K.T., Ruusala, T., Jelenc, P.C., Kurland, C.G. (1984). Kinetic impairment of restrictive streptomycin resistant ribosomes. Mol. Gen. Genet. 198: 90–99.PubMedCrossRefGoogle Scholar
  5. Dabbs, E.R. (1979). Selection for Escherichia coli mutants with proteins missing from the ribosomes. J. Bacteriol. 140: 734–737.PubMedGoogle Scholar
  6. Dabbs, E.R., Hasenbank, R., Kastner, B., Rak, K-H., Wartusch, B., Stöffler, G. (1983). Immunological studies of Escherichia coli mutants lacking one or two ribosomal proteins. Molec. Gen. Genet. 192: 301–308.PubMedCrossRefGoogle Scholar
  7. Ehrenberg, M., Kurland, C.G. (1984). Costs of accuracy determined by a maximal growth rate constraint. Quart. Rev. Biophys. 17: 45.CrossRefGoogle Scholar
  8. Ehrenberg, M., Kurland, C.G., Ruusala, T. (1985). Counting cycles of EF-Tu to measure proofreading in translation. Biochimie 68: 261–273.CrossRefGoogle Scholar
  9. Eisinger, J., Feuer, B., Yamane, T. (1971). Codon-anticodon binding in tRNAPhe. Nat. New Biol. 231: 126–128.PubMedCrossRefGoogle Scholar
  10. Garrett, R. (1983 a). Roles for ribosomal proteins. TIBS 8: 75–76.Google Scholar
  11. Garrett, R. (1983b). Antibiotics and active ribosomal RNA sites. TIBS 8: 189–190.Google Scholar
  12. Gorini, L. (1971). Ribosomal discrimination of tRNAs. Nat. New Biol. 234: 261–264.PubMedGoogle Scholar
  13. Gouy, M., Grantham, R. (1980). Polypeptide elongation and tRNA cycling in Escherichia coli: a dynamic approach. FEBS Lett. 115: 151–155.PubMedCrossRefGoogle Scholar
  14. Hopfield, J.J. (1974). Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sei. USA 71: 4135–4139.CrossRefGoogle Scholar
  15. Ingraham, J.L., Maaloe, O., Neidhardt, F.C. (1983). Growth of the bacterial cell. Sinauer Associates, Inc. Publishers, Sunderland, Ma., 435 pp.Google Scholar
  16. Jelenc, P.C., Kurland, C.G. (1979). Nucleoside triphosphate regeneration decreases the frequency of translation errors. Proc. Natl. Acad. Sei. USA 76: 3174–3178.CrossRefGoogle Scholar
  17. Kurland, C.G. (1974). Functional organization of the 30S ribosomal subunit. In: Ribosomes, ed. Nomura, M., etal., Cold Spring Harbor Laboratory, p. 309–321.Google Scholar
  18. Kurland, C.G. (1978). The role of guanine nucleotides in protein biosynthesis. Biophys. J. 22: 373–392.PubMedCrossRefGoogle Scholar
  19. Kurland, C.G. (1985). Tuning the ribosome. In: The molecular biology of bacterial growth, eds. Schaechter, M., Neidhardt, F.C., Ingraham, J.L., Kjeldgaard, N.O., Jones and Bartlett Publishers, Inc. p. 108–129.Google Scholar
  20. Kurland, C.G., Ehrenberg, M. (1984). Optimization of translation accuracy. Progr. Nucl. Acid. Res. Mol. Biol. 31: 191–219.CrossRefGoogle Scholar
  21. Loftfield, R.B. (1963). The frequency of errors in protein biosynthesis. Biochem. J. 89: 82–92.PubMedGoogle Scholar
  22. Loftfield, R.B., Vanderjagt, D. (1972). The frequency of errors in protein biosynthesis. Biochem. J. 128: 1353–1356.PubMedGoogle Scholar
  23. Maaloe, O. (1979). Regulation of the protein-synthesizing machinery, ribosomes, tRNA, factors and so on. In: Biological regulation and development, ed. Goldberger, R.F., Plenum Press, New York, pp. 487–542.Google Scholar
  24. Miller, J.H., Coulondre, C., Hofer, M., Schmeissner, U., Sommer, H., Schmitz, A. (1979). Genetic studies of the lac repressor. IX generation of altered proteins by the suppression of nonsense mutations. J. Mol. Biol. 131: 191–222.PubMedCrossRefGoogle Scholar
  25. Neidhardt, F., Block, P., Pedersen, S., Reeh, S. (1977). Chemical measurement of steady-state levels of ten aminoacyl-transfer ribonucleic acid synthetases in Escherichia coli. J. Bacteriol. 129: 378–387.PubMedGoogle Scholar
  26. Nene, V., Glass, R.E. (1982). Genetics studies on the ß subunit of Escherichia coli RNA polymerase I. The effect of known, single aminoacid substitutions in an essential protein. Mol. Gen. Genet. 188: 399–404.PubMedCrossRefGoogle Scholar
  27. Ninio, J. (1974). A semiquantitative treatment of missense and nonsense suppression in the strA and ram ribosomal mutants of Escherichia coli. Evaluation of some molecular parameters of translation in vivo. J. Mol. Biol. 84: 297–313.PubMedCrossRefGoogle Scholar
  28. Ninio, J. (1975). Kinetic amplification of enzyme discrimination. Biochimie 57: 587–595.PubMedCrossRefGoogle Scholar
  29. Olsson, M.O., Isaksson, L.A., Kurland, C.G. (1974). Pleiotropic effects of ribosomal protein S4 studied in Escherichia coli mutants. Mol. Gen. Genet. 135: 191–202.PubMedCrossRefGoogle Scholar
  30. Orgel, L.E. (1963). The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc. Natl. Acad. Sei. 49: 517–521.CrossRefGoogle Scholar
  31. Orgel, L.E. (1970). The maintenance of the accuracy of protein synthesis and its relevance to ageing: a correction. Proc. Natl. Acad. Sei. 67: 1476.CrossRefGoogle Scholar
  32. Pedersen, S. (1984). Escherichia coli ribosomes translate in vivo with variable rate. EMBO J. 3: 2895–2898.PubMedGoogle Scholar
  33. Ruusala, T., Andersson, D.I., Ehrenberg, M., Kurland, C.G. (1984). Hyperaccurate ribosomes inhibit growth. EMBO J. 3: 2575–2580.PubMedGoogle Scholar
  34. Ruusala, T., Ehrenberg, M., Kurland, C.G. (1982). Is there proofreading during polypeptide synthesis? EMBO J. 1: 741–745.PubMedGoogle Scholar
  35. Ruusala, T., Kurland, C.G. (1984). Streptomycin perturbs preferentially ribosomal proofreading. Mol. Gen. Genet. 198: 100–104.PubMedCrossRefGoogle Scholar
  36. Wagner, E.G.H., Jelenc, P.C., Ehrenberg, M., Kurland, C.G. (1982). Rate of elon¬gation of polyphenylalanine in vitro. Eur. J. Biochem. 122: 193–197.PubMedCrossRefGoogle Scholar
  37. Zengel, J., Young, R., Dennis, P., Nomura, M. (1977). Role of ribosomal protein SI2 in peptide chain elongation: analysis of pleiotropic, streptomycin-resistant mutants of Escherichia coli. J. Bacteriol. 129: 1320–1329.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • M. Ehrenberg
  • D. Andersson
  • K. Bohman
  • P. Jelenc
  • T. Ruusala
  • C. G. Kurland

There are no affiliations available

Personalised recommendations