Skip to main content

Ribosomal Proteins Tune Rate and Accuracy in Translation

  • Chapter
Structure, Function, and Genetics of Ribosomes

Part of the book series: Springer Series in Molecular Biology ((SSMOL))

Abstract

Growing bacteria use a significant fraction of their investments in phosphodiester bonds and peptide bonds for the translation apparatus (Maaløe, 1979; Ingraham et al., 1983). These major investments in ribosomes and other proteins directly involved in translation appear to guarantee a fast growth rate under varying conditions (Maaløe, 1979; Ingraham et al., 1983). In spite of the impressive size of the ribosomal particle in Escherichia coli (Maaløe, 1979) and in spite of its occurrence in very high copy-numbers (Neidhardt et al., 1977), its role in gene expression somehow does not seem to correspond to its complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, D.I., Kurland, C.G. (1983). Ram ribosomes are defective proofreaders. Mol. Gen. Genet. 191: 378–381.

    Article  PubMed  CAS  Google Scholar 

  • Biswas, D.K., Gorini, L. (1972). Restriction, derestriction, and mistranslation in missense suppression. Ribosomal discrimination of transfer RNAs. J. Mol. Biol. 64: 119–134.

    Article  PubMed  CAS  Google Scholar 

  • Blomberg, C., Ehrenberg, M., Kurland, C.G. (1980). Free energy dissipation constraints on the accuracy of enzymatic selections. Quart. Rev. Biophys. 13: 231–254.

    Article  CAS  Google Scholar 

  • Bohman, K.T., Ruusala, T., Jelenc, P.C., Kurland, C.G. (1984). Kinetic impairment of restrictive streptomycin resistant ribosomes. Mol. Gen. Genet. 198: 90–99.

    Article  PubMed  CAS  Google Scholar 

  • Dabbs, E.R. (1979). Selection for Escherichia coli mutants with proteins missing from the ribosomes. J. Bacteriol. 140: 734–737.

    PubMed  CAS  Google Scholar 

  • Dabbs, E.R., Hasenbank, R., Kastner, B., Rak, K-H., Wartusch, B., Stöffler, G. (1983). Immunological studies of Escherichia coli mutants lacking one or two ribosomal proteins. Molec. Gen. Genet. 192: 301–308.

    Article  PubMed  CAS  Google Scholar 

  • Ehrenberg, M., Kurland, C.G. (1984). Costs of accuracy determined by a maximal growth rate constraint. Quart. Rev. Biophys. 17: 45.

    Article  CAS  Google Scholar 

  • Ehrenberg, M., Kurland, C.G., Ruusala, T. (1985). Counting cycles of EF-Tu to measure proofreading in translation. Biochimie 68: 261–273.

    Article  Google Scholar 

  • Eisinger, J., Feuer, B., Yamane, T. (1971). Codon-anticodon binding in tRNAPhe. Nat. New Biol. 231: 126–128.

    Article  PubMed  CAS  Google Scholar 

  • Garrett, R. (1983 a). Roles for ribosomal proteins. TIBS 8: 75–76.

    Google Scholar 

  • Garrett, R. (1983b). Antibiotics and active ribosomal RNA sites. TIBS 8: 189–190.

    CAS  Google Scholar 

  • Gorini, L. (1971). Ribosomal discrimination of tRNAs. Nat. New Biol. 234: 261–264.

    PubMed  CAS  Google Scholar 

  • Gouy, M., Grantham, R. (1980). Polypeptide elongation and tRNA cycling in Escherichia coli: a dynamic approach. FEBS Lett. 115: 151–155.

    Article  PubMed  CAS  Google Scholar 

  • Hopfield, J.J. (1974). Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sei. USA 71: 4135–4139.

    Article  CAS  Google Scholar 

  • Ingraham, J.L., Maaloe, O., Neidhardt, F.C. (1983). Growth of the bacterial cell. Sinauer Associates, Inc. Publishers, Sunderland, Ma., 435 pp.

    Google Scholar 

  • Jelenc, P.C., Kurland, C.G. (1979). Nucleoside triphosphate regeneration decreases the frequency of translation errors. Proc. Natl. Acad. Sei. USA 76: 3174–3178.

    Article  CAS  Google Scholar 

  • Kurland, C.G. (1974). Functional organization of the 30S ribosomal subunit. In: Ribosomes, ed. Nomura, M., etal., Cold Spring Harbor Laboratory, p. 309–321.

    Google Scholar 

  • Kurland, C.G. (1978). The role of guanine nucleotides in protein biosynthesis. Biophys. J. 22: 373–392.

    Article  PubMed  CAS  Google Scholar 

  • Kurland, C.G. (1985). Tuning the ribosome. In: The molecular biology of bacterial growth, eds. Schaechter, M., Neidhardt, F.C., Ingraham, J.L., Kjeldgaard, N.O., Jones and Bartlett Publishers, Inc. p. 108–129.

    Google Scholar 

  • Kurland, C.G., Ehrenberg, M. (1984). Optimization of translation accuracy. Progr. Nucl. Acid. Res. Mol. Biol. 31: 191–219.

    Article  CAS  Google Scholar 

  • Loftfield, R.B. (1963). The frequency of errors in protein biosynthesis. Biochem. J. 89: 82–92.

    PubMed  CAS  Google Scholar 

  • Loftfield, R.B., Vanderjagt, D. (1972). The frequency of errors in protein biosynthesis. Biochem. J. 128: 1353–1356.

    PubMed  CAS  Google Scholar 

  • Maaloe, O. (1979). Regulation of the protein-synthesizing machinery, ribosomes, tRNA, factors and so on. In: Biological regulation and development, ed. Goldberger, R.F., Plenum Press, New York, pp. 487–542.

    Google Scholar 

  • Miller, J.H., Coulondre, C., Hofer, M., Schmeissner, U., Sommer, H., Schmitz, A. (1979). Genetic studies of the lac repressor. IX generation of altered proteins by the suppression of nonsense mutations. J. Mol. Biol. 131: 191–222.

    Article  PubMed  CAS  Google Scholar 

  • Neidhardt, F., Block, P., Pedersen, S., Reeh, S. (1977). Chemical measurement of steady-state levels of ten aminoacyl-transfer ribonucleic acid synthetases in Escherichia coli. J. Bacteriol. 129: 378–387.

    PubMed  CAS  Google Scholar 

  • Nene, V., Glass, R.E. (1982). Genetics studies on the ß subunit of Escherichia coli RNA polymerase I. The effect of known, single aminoacid substitutions in an essential protein. Mol. Gen. Genet. 188: 399–404.

    Article  PubMed  CAS  Google Scholar 

  • Ninio, J. (1974). A semiquantitative treatment of missense and nonsense suppression in the strA and ram ribosomal mutants of Escherichia coli. Evaluation of some molecular parameters of translation in vivo. J. Mol. Biol. 84: 297–313.

    Article  PubMed  CAS  Google Scholar 

  • Ninio, J. (1975). Kinetic amplification of enzyme discrimination. Biochimie 57: 587–595.

    Article  PubMed  CAS  Google Scholar 

  • Olsson, M.O., Isaksson, L.A., Kurland, C.G. (1974). Pleiotropic effects of ribosomal protein S4 studied in Escherichia coli mutants. Mol. Gen. Genet. 135: 191–202.

    Article  PubMed  CAS  Google Scholar 

  • Orgel, L.E. (1963). The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc. Natl. Acad. Sei. 49: 517–521.

    Article  CAS  Google Scholar 

  • Orgel, L.E. (1970). The maintenance of the accuracy of protein synthesis and its relevance to ageing: a correction. Proc. Natl. Acad. Sei. 67: 1476.

    Article  CAS  Google Scholar 

  • Pedersen, S. (1984). Escherichia coli ribosomes translate in vivo with variable rate. EMBO J. 3: 2895–2898.

    PubMed  CAS  Google Scholar 

  • Ruusala, T., Andersson, D.I., Ehrenberg, M., Kurland, C.G. (1984). Hyperaccurate ribosomes inhibit growth. EMBO J. 3: 2575–2580.

    PubMed  CAS  Google Scholar 

  • Ruusala, T., Ehrenberg, M., Kurland, C.G. (1982). Is there proofreading during polypeptide synthesis? EMBO J. 1: 741–745.

    PubMed  CAS  Google Scholar 

  • Ruusala, T., Kurland, C.G. (1984). Streptomycin perturbs preferentially ribosomal proofreading. Mol. Gen. Genet. 198: 100–104.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, E.G.H., Jelenc, P.C., Ehrenberg, M., Kurland, C.G. (1982). Rate of elon¬gation of polyphenylalanine in vitro. Eur. J. Biochem. 122: 193–197.

    Article  PubMed  CAS  Google Scholar 

  • Zengel, J., Young, R., Dennis, P., Nomura, M. (1977). Role of ribosomal protein SI2 in peptide chain elongation: analysis of pleiotropic, streptomycin-resistant mutants of Escherichia coli. J. Bacteriol. 129: 1320–1329.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Ehrenberg, M., Andersson, D., Bohman, K., Jelenc, P., Ruusala, T., Kurland, C.G. (1986). Ribosomal Proteins Tune Rate and Accuracy in Translation. In: Hardesty, B., Kramer, G. (eds) Structure, Function, and Genetics of Ribosomes. Springer Series in Molecular Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4884-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4884-2_33

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9346-0

  • Online ISBN: 978-1-4612-4884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics