Skip to main content

The Aminoacyl-tRNA·Elongation Factor Tu·GTP Ternary Complex and Its Role in Aminoacyl-tRNA Selection at the Ribosome

  • Chapter
Book cover Structure, Function, and Genetics of Ribosomes

Part of the book series: Springer Series in Molecular Biology ((SSMOL))

  • 194 Accesses

Abstract

Accuracy is particularly crucial to an organism during protein biosynthesis, and the mRNA-directed polymerization of amino acids proceeds with a remarkably low frequency of error, as noted elsewhere in this volume. At the ribosome, the selection of the amino acid is mediated by base-pairing between an mRNA codon and an aminoacyl-tRNA (aa-tRNA) anticodon. However, this interaction is insufficient to account for the accuracy of protein biosynthesis (Grosjean et al., 1978), and the molecular mechanism by which the translational machinery magnifies its discrimination between correct and incorrect codon-anticodon pairs is not yet understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamson, J.K., Laue, T.M., Miller, D.L., Johnson, A.E. (1985). Direct determination of the association constant between elongation factor Tu•GTP and aminoacyl-tRNA using fluorescence. Biochemistry 24: 692–700.

    Article  PubMed  CAS  Google Scholar 

  • Adkins, H.J., Miller, D.L., Johnson, A.E. (1983). Changes in aminoacyl transfer ribonucleic acid conformation upon association with elongation factor Tu-guanosine 5 ′-triphosphate. Fluorescence studies of ternary complex conformation and topology. Biochemistry 22: 1208–1217.

    Article  PubMed  CAS  Google Scholar 

  • Bertram, S., Wagner, R. (1982). Accessibility of tRNAphe from E. coli in the ternary complex with EF-Tu studied by kethoxal modification. Biochem. Int. 4: 117–126.

    CAS  Google Scholar 

  • Crothers, D.M., Cole, P.E. (1978). Conformational changes of tRNA. In: Transfer RNA, ed. Altman, S. MIT Press, Cambridge, pp. 196–247.

    Google Scholar 

  • Duffy, L.K., Gerber, L., Johnson, A.E., Miller, D.L. (1981). Identification of a histidine residue near the aminoacyl transfer ribonucleic acid binding site of elongation factor Tu. Biochemistry 20: 4663–4666.

    Article  PubMed  CAS  Google Scholar 

  • Furano, A.V. (1975). Content of elongation factor Tu in Escherichia coli. Proc. Nat. Acad. Sei USA 72: 4780–4784.

    Article  CAS  Google Scholar 

  • Grosjean, H.J., de Henau, S., Crothers, D.M. (1978). On the physical basis for ambiguity in genetic coding interactions. Proc. Nat. Acad. Sei. USA 75: 610–614.

    Article  CAS  Google Scholar 

  • Grosjean, H., Söll, D.G., Crothers, D.M. (1976). Studies of the complex between transfer RNAs with complementary anticodons. J. Mol. Biol. 103: 499–519.

    Article  PubMed  CAS  Google Scholar 

  • Hardesty, B., Culp, W., McKeehan, W. (1969). The sequence of reactions leading to the synthesis of a peptide bond on reticulocyte ribosomes. Cold Spring Harbor Symp. Quant. Biol. 34: 331–345.

    PubMed  CAS  Google Scholar 

  • Hopfield, J.J. (1974). Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Nat. Acad. Sei. USA 71: 4135–4139.

    Article  CAS  Google Scholar 

  • Ingraham, J.L., Maaloe, O., Neidhardt, F.C. (1983). Growth of the bacterial cell. Sinauer Associates, Sunderland, MA, p. 3.

    Google Scholar 

  • Jekowsky, E., Schimmel, P.R., Miller, D.L. (1977). Isolation, characterization and structural implications of a nuclease-digested complex of aminoacyl transfer RNA and Escherichia coli elongation factor Tu. J. Mol. Biol. 114: 451–458.

    Article  CAS  Google Scholar 

  • Johnson, A.E., Adkins, H.J., Matthews, E.A., Cantor, C.R. (1982). Distance moved by transfer RNA during translocation from the A site to the P site on the ribosome. J. Mol. Biol. 156: 113–140.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, A.E., Fairclough, R.H., Cantor, C.R. (1977). Some approaches for the study of ribosome-tRNA interactions. In: Nucleic acid-protein recognition, ed. Vogel, H.J. Academic Press, New York, pp. 469–490.

    Google Scholar 

  • Johnson, A.E., Miller, D.L., Cantor, C.R. (1978). Functional covalent complex between elongation factor Tu and an analog of lysyl-tRNA. Proc. Nat. Acad. Sei. USA 75: 3075–3079.

    Article  CAS  Google Scholar 

  • Kao, T., Miller, D.L., Abo, M., Ofengand, J. (1983). Formation and properties of a covalent complex between elongation factor Tu and Phe-tRNA bearing a photoaffmity probe on its 3-(3-amino-3-carboxypropyl)uridine residue. J. Mol. Biol. 166: 383–405.

    Article  PubMed  CAS  Google Scholar 

  • Knowlton, R.G., Yarus, M. (1980). Discrimination between aminoacyl groups on su+7 tRNA by elongation factor Tu. J. Mol. Biol. 139: 721–732.

    Article  PubMed  CAS  Google Scholar 

  • Kruse, T.A., Clark, B.F.C., Sprinzl, M. (1978). The effect of specific structural modification on the biological activity of E. coli arginine tRNA. Nucl. Acids Res. 5: 879–892.

    Article  CAS  Google Scholar 

  • Lake, J.A. (1977). Aminoacyl-tRNA binding at the recognition site is the first step of the elongation cycle of protein synthesis. Proc. Nat. Acad. Sei. USA 74: 1903–1907.

    Article  CAS  Google Scholar 

  • Louie, A., Ribeiro, N.S., Reid, B.R., Jurnak, F. (1984). Relative affinities of all Escherichia coli aminoacyl-tRNAs for elongation factor Tu-GTP. J. Biol. Chem. 259: 5010–5016.

    PubMed  CAS  Google Scholar 

  • Miller, D.L., Weissbach, H. (1977). The interactions of elongation factor Tu. In: Nucleic acid-protein recognition, ed. Vogel, H.J. Academic Press, New York, pp. 409–440.

    Google Scholar 

  • Picone, D., Parmeggiani, A. (1983). Transfer ribonucleic acid deprived of the C-C-A 3′-extremity can interact with elongation factor Tu. Biochemistry 22: 4400–4405.

    Article  PubMed  CAS  Google Scholar 

  • Pingoud, A., Block, W., Wittinghofer, A., Wolf, H., Fischer, E. (1982). The elongation factor Tu binds aminoacyl-tRNA in the presence of GDP. J. Biol. Chem. 257: 11261–11267.

    PubMed  CAS  Google Scholar 

  • Pingoud, A., Urbanke, C. (1980). Aminoacyl transfer ribonucleic acid binding site of the bacterial elongation factor Tu. Biochemistry 19: 2108–2112.

    Article  PubMed  CAS  Google Scholar 

  • Pingoud, A., Urbanke, C., Krauss, G., Peters, F., Maass, G. (1977). Ternary complex formation between elongation factor Tu, GTP and aminoacyl-tRNA: an equilibrium study. Eur. J. Biochem. 78: 403–409.

    Article  PubMed  CAS  Google Scholar 

  • Riehl, N., Giege, R., Ebel, J.P., Ehresmann, B. (1983). Effect of elongation factor Tu on the conformation of phenylalanyl-tRNAphe. FEBS Lett. 154: 42–46.

    Article  PubMed  CAS  Google Scholar 

  • Schulman, L.H., Pelka, H., Sundari, R.M. (1974). Structural requirements for recognition of Escherichia coli initiator and non-initiator transfer ribonucleic acids by bacterial T factor. J. Biol. Chem. 249: 7102–7110.

    PubMed  CAS  Google Scholar 

  • Tanada, S., Kawakami, M., Nishio, K., Takemura, S. (1982). Interaction of amino-acyl-tRNA with bacterial elongation factor Tu:GTP complex: effects of the amino group of amino acid esterified to tRNA, the amino acid side chain, and tRNA structure. J. Biochem. 91: 291–299.

    PubMed  CAS  Google Scholar 

  • Vacher, J., Buckingham, R.H. (1979). Effect of photochemical crosslink s4U(8)-C(13) on suppressor activity of su+ tRNATrp from Escherichia coli. J. Mol. Biol. 129: 287–294.

    Article  PubMed  CAS  Google Scholar 

  • Van Noort, J.M., Kraal, B., Bosch, L., La Cour, T.F.M., Nyborg, J., Clark, B.F.C. (1984). Crosslinking of tRNA at two different sites of the elongation factor Tu. Proc. Nat. Acad. Sci. USA 81: 3969–3972.

    Article  PubMed  Google Scholar 

  • Vlassov, V.V., Giege, R., Ebel, J.-P. (1981). Tertiary structure of tRNAs in solution monitored by phosphodiester modification with ethylnitrosourea. Eur. J. Biochem. 119: 51–59.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, T., Sprinzl, M. (1980). The complex formation between Escherichia coli aminoacyl-tRNA, elongation factor Tu and GTP. Eur. J. Biochem. 108: 213–221.

    Article  PubMed  CAS  Google Scholar 

  • Weygand-Durasevic, I., Kruse, T.A., Clark, B.F.C. (1981). The influence of elongation factor Tu • GTP and anticodon-anticodon interactions on the anticodon loop conformation of yeast tRNATyr. Eur. J. Biochem. 116: 59–65.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, H., Chinali, G., Parmeggiani, A. (1977). Mechanism of the inhibition of protein synthesis by kirromycin. Eur. J. Biochem. 75: 67–75.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Johnson, A.E., Janiak, F., Dell, V.A., Abrahamson, J.K. (1986). The Aminoacyl-tRNA·Elongation Factor Tu·GTP Ternary Complex and Its Role in Aminoacyl-tRNA Selection at the Ribosome. In: Hardesty, B., Kramer, G. (eds) Structure, Function, and Genetics of Ribosomes. Springer Series in Molecular Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4884-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4884-2_31

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9346-0

  • Online ISBN: 978-1-4612-4884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics