Skip to main content

Isomers of Aminoacyl- and Peptidyl-tRNA in the Peptidyl Transferase Reaction

  • Chapter
Structure, Function, and Genetics of Ribosomes

Part of the book series: Springer Series in Molecular Biology ((SSMOL))

Abstract

The synthesis of the peptide bonds takes place via the transfer of the activated peptidyl residue from peptidyl-tRNA to the aminoacyl residue of aa-tRNA. Although the ester bond of charged tRNAs is an energy-rich bond with the free energy of hydrolysis approximately equal to the free energy of hydrolysis of ATP (Loftfield, 1972), the reaction between peptidyl- and aminoacyl-tRNA does not occur spontaneously if the two charged tRNAs are allowed to react in buffered aqueous solutions. Even at high concentration of the charged tRNA species, a new peptide bond will not be formed in the absence of ribosomes. Therefore, the macromolecular components of the ribosomal translational apparatus must be involved either as a matrix surface or as a catalytic unit in the peptidyl transferase reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baksht, E., de Groot, N. (1974). Enzymic binding of aminoacyl-tRNA to reticulo-cyte ribosomes. Stimulatory effect of donor site bound peptidyl-tRNA. Mol. Biol. Rep 1: 493–498.

    CAS  Google Scholar 

  • Baksht, E., de Groot, N., Sprinzl, M., Cramer, F. (1976). Properties of tRNA species modified in the 3’-terminal ribose moiety in a eukaryotic ribosomal sys-tem. Biochemistry 15: 3639–3645.

    CAS  Google Scholar 

  • Barta, A., Steiner, G., Brosius, J., Noller, H.F., Kuechler, E. (1984). Identification of a site on 23S ribosomal RNA located at the peptidyl transferase center. Proc. Natl. Acad. Sci. USA 81: 3607–3611.

    Article  PubMed  CAS  Google Scholar 

  • Bhuta, A., Quiggle, K., Ott, T., Ringer, D., Chladek, S. (1981). Stereochemical control of ribosomal peptidyltransferase reaction. Role of amino acid side-chain orientation of acceptor substrate. Biochemistry 20: 8–14.

    Article  PubMed  CAS  Google Scholar 

  • Cech, T.R., Zang, A.T., Grabowski, P.J. (1981). In vitro splicing of the ribosomal RNA precursor of tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27: 487–496.

    Article  PubMed  CAS  Google Scholar 

  • Cheney, V.B. (1974). Ab initio calculations on large molecules using molecular fragments, structural correlations between natural substrate moieties and some antibiotic inhibitors of peptidyl transferase. J. Med. Chem 17: 590–595.

    Article  PubMed  CAS  Google Scholar 

  • Chinali, G., Sprinzl, M., Parmeggiani, A., Cramer, F. (1974). Participation in protein biosynthesis of transfer ribonucleic acids bearing altered 3/-terminal ribosyl residues. Biochemistry 13: 3001–3006.

    Article  PubMed  CAS  Google Scholar 

  • Chladek, S., Sprinzl, M. (1985). The 3/-end of tRNA and its role in protein biosynthesis. Angewandete Chemie, Int. ed 24: 371–391.

    Article  Google Scholar 

  • Derwenskus, K.-H., Sprinzl, M. (1983). Interaction of cinnamyl-tRNA with Escherichia coli elongation factor Tu. FEBS Lett. 151: 143–147.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, W., Doi, T., Ikehara, M., Ohtsuka, E., Sprinzl, M. (1985). Interaction of methionine-specific tRNAs from Escherichia coli with immobilized elongation factor Tu. FEBS Lett. 192: 151–155.

    Article  PubMed  CAS  Google Scholar 

  • Forchhammer, J., Lindhal, L. (1971). Growth rate of polypeptide chains as a func-tion of the cell growth rate in a mutant of Escherichia coli 15 J. Mol. Biol. 55: 563–568.

    Article  PubMed  CAS  Google Scholar 

  • Fraser, T.H., Rich, A. (1973). Synthesis and aminoacylation of 3’-amino-3/-deoxy transfer RNA and its activity in ribosomal protein synthesis. Proc. Natl. Acad. Sci. USA 70: 2671–2675.

    Article  PubMed  CAS  Google Scholar 

  • Garrett, R.A., Woolley, P. (1982). Identifying the peptidyl transferase centre. TIBS 7: 385–386.

    CAS  Google Scholar 

  • Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N., Altman, S. (1983). The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35: 849–857.

    Article  PubMed  CAS  Google Scholar 

  • Hay, R.W., Porter, F.J. (1967). Protein ionisation constants and kinetics of base hydrolysis of some a-amino acid esters in aqueous solution. J. Chem. Soc. (B): 1261–1264.

    Google Scholar 

  • Hecht, S.M. (1977). Utilization of isomeric aminoacyl transfer ribonucleic acids in peptide bond formation. Acct. Chem. Res 10: 239–245.

    Article  CAS  Google Scholar 

  • Hecht, S.M., Alford, B., Kuroda, Y, Kitano, S. (1978). “Chemical aminoacyla- tion” of tRNAs. J. Biol. Chem. 253:4517–4520.

    PubMed  CAS  Google Scholar 

  • Heckler, T.G., Zama, Y., Naka, T, Hecht, S.M. (1983). Dipeptide formation with misacylated tRNAs. J. Biol. Chem 258: 4492–4495.

    PubMed  CAS  Google Scholar 

  • Hentzen, D., Mandel, P., Garel, J.P. (1972). Relation between aminoacyl-tRNA stability and the fixed amino acid. Biochim. Biophys. Acta 281: 228–232.

    PubMed  CAS  Google Scholar 

  • Herve, G., Chapeville, F. (1965). Incorporation of phenyllactic acid in terminal position during polyphenyl alanine biosynthesis. J. Mol. Biol 13: 757–766.

    Article  CAS  Google Scholar 

  • Holschuh, K., Bonin, J., Gassen, G. (1980). Mechanism of translocation: effect of cognate transfer ribonucleic acids on the binding of AUGU to 70S ribosomes. Biochemistry 19: 5857–5863.

    Article  PubMed  CAS  Google Scholar 

  • Jekowsky, E., Miller, D.L., Schimmel, P.R. (1977). Isolation, characterization, and structural implications of a nuclease-digested complex of aminoacyl transfer RNA and Escherichia coli elongation factor Tu. J. Mol. Biol 114: 451–458.

    Article  PubMed  CAS  Google Scholar 

  • Joshi, R.L., Faulhammer, H., Chapeville, F., Sprinzl, M., Haenni, A.-L. (1984). Aminoacyl RNA domain of turnip yellow mosaic virus Val-RNA interacting with elongation factor Tu. Nucl. Acids Res 12: 7467–7473.

    Article  PubMed  CAS  Google Scholar 

  • Knowlton, R.G., Yarus, M. (1980). Discrimination between aminoacyl groups on su+7 tRNA by eongation factor Tu. J. Mol. Biol 139: 721–729.

    Article  PubMed  CAS  Google Scholar 

  • Kruse, T.A., Clark, B.F.C., Appel, B., Erdmann, V.A. (1980a). The structure of the CCA end of tRNA, aminoacyl-tRNA and aminoacyl-tRNA in the ternary complex. FEBS Lett. 117: 315–319.

    Article  PubMed  CAS  Google Scholar 

  • Kruse, T.A., Siboska, G.E., Sprinzl, M, Clark, B.F.C. (1980b). The effect of chemical modification of the CCA end of yeast tRNAphe on its biological activity on ribosomes. Eur. J. Biochem 107: 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Labuda, D., Striker, G., Porschke, D. (1984). Mechanism of codon recognition by transfer RNA and codon-induced tRNA association. J. Mol. Biol 174: 587–595.

    Article  PubMed  CAS  Google Scholar 

  • Leder, P. (1973). Elongation reactions in protein synthesis. Adv. Prot. Chem 27: 213–223.

    Article  CAS  Google Scholar 

  • Loftfield, R.B. (1972). Mechanism of aminoacylation to transfer RNA. Prog. Nucl. Acid Res. Mol. Biol 12: 87–91.

    Article  CAS  Google Scholar 

  • Lucas-Lenard, J., Tao, P., Haenni, A.-L. (1969). Further studies on bacterial polypeptide elongation. Cold Spring Harbor Symp. Quant. Biol 34: 455–462.

    PubMed  CAS  Google Scholar 

  • Maelicke, A., Sprinzl, M., von der Haar, F., Khwaja, T.A., Cramer, F. (1974). Structural studies on phenylalanine transfer ribonucleic acid from yeast with the spectroscopic label formycin. Eur. J. Biochem 43: 617–623.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin, C.S., Ingram, V.M. (1965). Chemical studies on amino acid acceptor ribonucleic acids. IV. Position of the amino acid residue in aminoacyl s-RNA: chemical approach. Biochemistry 4: 1442–1448.

    Article  PubMed  CAS  Google Scholar 

  • Möller, A., Wild, U., Riesner, D., Gassen, G.H. (1979). Evidence from ultraviolet absorbance measurements for a codon-induced conformational change in lysine tRNA from Escherichia coli. Proc. Natl. Acad. Sci. USA 76: 3266–3270.

    Article  PubMed  Google Scholar 

  • Nierhaus, K.H. (1982). Structure, assembly, and function of ribosomes. Curr. Top. Microbiol. Immunol 97: 81–102.

    PubMed  CAS  Google Scholar 

  • Nierhaus, K.H., Schulz, H., Coopermann, B.S. (1980). Molecular mechanisms of the ribosomal peptidyltransferase center. Biochem. Int 1: 185–190.

    CAS  Google Scholar 

  • Paulsen, H., Wintermeyer, W. (1984). Incorporation of 1,N6-ethenoadenosine into the 3’-terminus of tRNA using T4 RNA ligase. Eur. J. Biochem 138: 117–123.

    Article  PubMed  CAS  Google Scholar 

  • Pingoud, A., Urbanke, C. (1980). Aminoacyl transfer ribonucleic acid binding site of the bacterial elongation factor Tu. Biochemistry 19: 2108–2114.

    Article  PubMed  CAS  Google Scholar 

  • Ravel, J.M., Shorey, R.L., Shive, W. (1967). Evidence for a guanine nucleotide-aminoacyl-RNA complex as an intermediate in the enzymic transfer of amino- acyl-RNA to ribosomes. Biochem. Biophys. Res. Commun 29: 68–71.

    Article  PubMed  CAS  Google Scholar 

  • Rich, A., RajBhandary, U.L. (1976). Transfer RNA: molecular structure, sequence, and properties. Ann. Rev. Biochem 45: 805–860.

    Article  PubMed  CAS  Google Scholar 

  • Sedlaček, J., Jonák, J., Rychlik, I. (1976). Prevention of acylation of aminoacyl- tRNA bound in a complex with EF-Tu elongation factor. FEBS Lett. 68: 208–212.

    Article  PubMed  Google Scholar 

  • Schuber, F., Pinck, M. (1974). On the chemical reactivity of aminoacyl-tRNA ester bond. Influence of pH and nature of the acyl group on the rate of hydrolysis. Biochimie 56: 383–390.

    Article  PubMed  CAS  Google Scholar 

  • Schulman, L.H., Pelka, H., Sundari, R.M. (1974). Structural requirements for recognition of Escherichia coli initiator and non-initiator transfer ribonucleic acids by bacterial T factor. J. Biol. Chem 249: 7102–7110.

    PubMed  CAS  Google Scholar 

  • Sprinzl, M., Cramer, F. (1973). Accepting site for aminoacylation of tRNAphe from yeast. Nat. New Biol. (London) 245: 3–5.

    CAS  Google Scholar 

  • Sprinzl, M., Cramer, F. (1975). Site of aminoacylation of tRNAs from Escherichia coli with respect to the 2or 3/-hydroxyl group of the terminal adenosine. Proc. Natl. Acad. Sci. USA 72: 3049–3053.

    Article  PubMed  CAS  Google Scholar 

  • Sprinzl, M., Cramer, F. (1979). The C-C-A end of tRNA and its role in protein biosynthesis. Prog. Nucl. Acid Res. Mol. Biol 22: 1–21.

    Article  CAS  Google Scholar 

  • Sprinzl, M., Graeser, E. (1980). Role of the 5’-terminal phosphate of tRNA for its function during protein biosynthesis elongation cycle. Nucl. Acids Res 8: 4737–4746.

    Article  PubMed  CAS  Google Scholar 

  • Sprinzl, M., Kucharzewski, M., Hobbs, J.B., Cramer, F. (1977a). Specificity of elongation factor Tu from Escherichia coli with respect to attachment of the amino acid to the 2’ or 3/-hydroxyl group of the terminal adenosine of tRNA. Eur. J. Biochem 78: 55–61.

    Article  PubMed  CAS  Google Scholar 

  • Sprinzl, M., Siboska, G.E., Pedersen, J. (1978). Properties of tRNAphe from yeast carrying a spin label on the 3’-terminal. Interaction with yeast phenylalanyl-tRNA synthetase and elongation factor Tu from Escherichia coli. Nucl. Acids Res 5: 861–870.

    Article  PubMed  CAS  Google Scholar 

  • Sprinzl, M., Sternbach, H., von der Haar, F., Cramer, F. (1977 b). Enzymatic incor-poration of ATP and CMP analogues into 3’ end of tRNA. Eur. J. Biochem 81: 579–585.

    Google Scholar 

  • Taiji, M., Yokoyama, S., Miyazawa, T. (1983). Transacylation rates of (aminoacyl) adenosine moiety at the 3/-terminus of aminoacyl transfer ribonucleic acid. Biochemistry 22: 3220–3226.

    Article  PubMed  CAS  Google Scholar 

  • Thang, M.N., Dondon, L., Rether, B. (1972). Effect of the presence of a pCpCpCpA 3/-terminus in Phe-tRNAphe yeast on the interaction with elongation factors and with the poly U-ribosome system. FEBS Lett. 26: 145–149.

    Article  PubMed  CAS  Google Scholar 

  • Uemura, H., Imai, M., Ohtsuka, E., Ikehara, M., Soil, D. (1982). E. coli initiatior tRNA analogs with different nucleotides in the discriminator base position. Nucl. Acids Res 10: 6531–6539.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, T., Sprinzl, M. (1980). The complex formation between Escherichia coli aminoacyl-tRNA, elongation factor Tu and GTP. Eur. J. Biochem 108: 213–219.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, T., Sprinzl, M. (1983). Inhibition of ribosomal translocation by peptidyl transfer ribonucleic acid analogues. Biochemistry 22: 94 - 100.

    Article  PubMed  CAS  Google Scholar 

  • Yarus, M. (1979). The accuracy of translation. Prog. Nucl. Acid. Res. Mol. Biol 23: 195–210.

    Article  CAS  Google Scholar 

  • Zielinski, W.S., Sprinzl, M. (1984). Chemical synthesis of 5-azacytidine nucleotides and preparation of tRNAs containing 5-azacytidine in its 3/-terminus. Nucl. Acids Res 12: 5025–5032.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Sprinzl, M. (1986). Isomers of Aminoacyl- and Peptidyl-tRNA in the Peptidyl Transferase Reaction. In: Hardesty, B., Kramer, G. (eds) Structure, Function, and Genetics of Ribosomes. Springer Series in Molecular Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4884-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4884-2_29

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9346-0

  • Online ISBN: 978-1-4612-4884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics