How Do Protein L18 and 5S RNA Interact?

  • J. Christiansen
  • R. A. Garrett
Part of the Springer Series in Molecular Biology book series (SSMOL)


The complex of 5S RNA and proteins L18 and L25 from Escherichia coli has proved useful for studying both the chemistry of protein-RNA interactions and for examining cooperative assembly effects within ribosomes (reviewed by Garrett et al. 1981, 1984). It has the following advantages over most other protein-RNA complexes for such seminal studies: Both RNA and proteins are available in large quantities; the RNA is relatively small and homogeneous; the RNA secondary structure has been determined both experimentally and by comparing sequences to detect coordinated base changes; and the proteins are small and of known sequence. The current disadvantage is that insufficient protein sequences are available for localizing conserved amino acids or peptide sequences.


HB101 Cell Carboxamide Group Central Protuberance rrnB Operon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bear, D.G., Schleich, T., Noller, H.F., Garrett, R.A. (1977). Alteration of 5S RNA conformation by proteins L18 and L25. Nucl. Acids Res. 4: 2511–2526.CrossRefGoogle Scholar
  2. Brosius, J, Ullrich, A., Raker, M.A., Gray, A, Dull, T.J., Gutell, R.R., Noller, H.F. (1981). Construction and fine mapping of recombinant plasmids containing the rrn B ribosomal RNA operon of E. coli. Plasmid 6: 112–118.PubMedCrossRefGoogle Scholar
  3. Christensen, A., Mathiesen, M., Peattie, D., Garrett, R.A. (1985). Alternative conformers of 5S RNA and their biological relevance. Biochemistry 24: 2284–2291.PubMedCrossRefGoogle Scholar
  4. Christiansen, J., Douthwaite, S.R., Christensen, A., Garrett, R.A. (1985). Does unpaired adenosine-66 from helix II of E. coli 5S RNA bind to protein L18. EMBO J. 4: 1019–1024.PubMedGoogle Scholar
  5. Delihas, N., Andersen, J. (1982). Generalized structures of the 5S rRNAs. Nucl. Acids Res. 10: 7323–7344.PubMedCrossRefGoogle Scholar
  6. De Wachter, R., Chen, M.-W., Vandenberghe, A. (1982). Conservation of secondary structure in 5S RNA: a uniform model for eukaryotic, eubacterial, archaebacterial and organelle sequences is energetically favourable. Biochimie 5: 311–329.CrossRefGoogle Scholar
  7. Douthwaite, S.R., Christensen, A., Garrett, R.A. (1982). Binding sites of ribosomal proteins on prokaryotic 5S RNAs: a study with ribonucleases. Biochemistry 21: 2313–2320.PubMedCrossRefGoogle Scholar
  8. Douthwaite, S.R., Garrett, R.A. (1981). Secondary structure of prokaryotic 5S RNAs: a study with ribonucleases. Biochemistry 20: 7301–7307.PubMedCrossRefGoogle Scholar
  9. Douthwaite, S.R., Garrett, R.A., Wagner, R., Feunteun, J. (1979). A ribonuclease-resistant region of 5S RNA and its relation to the RNA binding sites of proteins L18 and L25. Nucl. Acids Res. 6: 2453–2470.PubMedCrossRefGoogle Scholar
  10. Erdmann, V.A., Wolters, J., Huysmanns, E., Vandenberghe, A., De Wachter, R. (1985). Collection of published 5S and 5.8S RNA sequences. Nucl. Acids Res. 12: 133–166.Google Scholar
  11. Evstafieva, A.G., Shatsky, I.N., Bogdanov, A.A., Vasiliev, V.D. (1985). Topography of RNA in the ribosome: location of the 5S RNA residues A39 and U40 on the central protuberance of the 50S subunit. FEBS Lett. 185: 57–62.PubMedCrossRefGoogle Scholar
  12. Fanning, T.G., Traut, R.R. (1981). Topography of the E. coli 5S RNA-protein complex as determined by crosslinking with dimethyl superimidate and dimethyl- 3,3′-dithiobispropionimidate. Nucl. Acids Res. 9: 993–1004.PubMedCrossRefGoogle Scholar
  13. Fersht, A.R., Shi, J.P., Knill-Jones, J., Lowe, D.M., Wilkinson, A.J., Blow, D.M., Brick, P., Carter, P., Waye, M.M.Y., Winter, G. (1985). Hydrogen bonding and biological specifity analysed by protein engineering. Nature 314: 235–238.PubMedCrossRefGoogle Scholar
  14. Feunteun, J., Monier, R., Garrett, R.A., Le Bret, M., Le Pecq, J.B. (1975). Effect of 50S subunit proteins L5, L18, and L25 on the fluorescence of 5S RNA-bound ethidium bromide. J. Mol. Biol. 93: 535–541.CrossRefGoogle Scholar
  15. Fox, G.E., Woese, C.R. (1975). 5S RNA secondary structure. Nature 256: 505–507.Google Scholar
  16. Garrett, R.A., Douthwaite, S.R., Noller, H.F. (1981). Structure and role of 5S RNA-protein complexes in protein biosynthesis. Trends Biochem. Sci. 5: 137–139.CrossRefGoogle Scholar
  17. Garrett, R.A., Noller, H.F. (1979). Structures of complexes of 5S RNA with proteins L5, L18 and L25 from E. coli: identification of kethoxal-reactive sites on the 5S RNA. J. Mol. Biol. 132: 637–648.PubMedCrossRefGoogle Scholar
  18. Garrett, R.A., Vester, B., Leffers, H., Sorensen, P.M., Kjems, J., Olesen, S.O., Christensen, A., Christiansen, J., Douthwaite, S.R. (1984). Mechanisms of protein-RNA recognition and assembly in ribosomes. Alfred Benzon Symp. No. 19, ed. Clark, B.F.C., Petersen, H.U. Munksgaard Press, Copenhagen, pp. 331–352.Google Scholar
  19. Gillam, S., Smith, M. (1979). Site-specific mutagenesis using synthetic oligodeoxyribonucleotide primers. 1. Optimum conditions and minimum oligodeoxyribonucleotide length. Gene 8: 81–97.PubMedCrossRefGoogle Scholar
  20. Göringer, H.U., Szymkowiak, C., Wagner, R. (1984a). E. coli 5S RNA A and B conformers. Characterization by enzymatic and chemical methods. Eur. J. Biochem. 144: 25–34.PubMedCrossRefGoogle Scholar
  21. Göringer, H.U., Wagner, R., Jacob, W.F., Dahlberg, A.E., Zwieb, C. (1984b). Oligonucleotide directed mutagenesis of E. coli 5S RNA: construction of mutant and structural analysis. Nucl. Acids Res. 12: 6935–6950.PubMedCrossRefGoogle Scholar
  22. Hancock, J., Wagner, R. (1982). A structural model of 5S RNA from E. coli based on intramolecular crosslinking evidence. Nucl. Acids Res. 10: 1257–1269.PubMedCrossRefGoogle Scholar
  23. Huber, P.W., Wool, I.G. (1984). Nuclease protection analysis of ribonucleoprotein complexes: use of the cytotoxic ribonuclease a-sarcin to determine the binding sites for E. coli proteins L5, L18 and L25 on 5S rRNA. Proc. Natl. Acad. Sci. USA 81: 322–326.PubMedCrossRefGoogle Scholar
  24. Jinks-Robertson, S., Gourse, R.L., Nomura, M. (1983). Expression of rRNA and tRNA genes in E. coli: evidence for feedback regulation by products of rRNA operons. Cell 33: 856–876.CrossRefGoogle Scholar
  25. Jordan, B.R., Forget, B.G., Monier, R. (1971). A low molecular weight RNA synthesized by E. coli in the presence of chloramphenicol I: characterization and relation to normally synthesized 5S RNA. J. Mol. Biol. 55: 407–421.PubMedCrossRefGoogle Scholar
  26. Kime, M.J., Moore, P.B. (1983). Nuclear Overhauser experiments at 500 MHz on the downfield proton spectrum of a ribonuclease resistant fragment of 5S RNA. Biochemistry 22: 2615–2622.PubMedCrossRefGoogle Scholar
  27. Kjems, J., Olesen, S.O., Garrett, R.A. (1985). Comparison of eubacterial and eukaryotic 5S RNA structures: a chemical modification study. Biochemistry 24: 241–250.PubMedCrossRefGoogle Scholar
  28. Kramer, B., Kramer, W., Fritz, H.J. (1984). Different base/base mismatches are corrected with different efficiencies by the methyl-directed DNA mismatch repair system of E. coli. Cell 38: 879–887.PubMedCrossRefGoogle Scholar
  29. Leontis, N.B., Moore, P.B. (1984). A small angle X-ray scattering study of a fragment derived from E. coli 5S RNA. Nucl. Acids Res. 12: 2193–2203.PubMedCrossRefGoogle Scholar
  30. Matheson, A.T., Nazar, R.N., Willick, G.E., Yaguchi, M. (1980). The evolution of the 5S RNA-protein complex. In: Genetics and evolution of RNA polymerase, tRNA and ribosomes, ed. Osawa, S. et al., University of Tokyo Press, pp. 625–637.Google Scholar
  31. Nazar, R.N., Wildeman, A.G. (1983). Three helical domains form a protein binding site in the 5S RNA-protein complex from eukaryotic ribosomes. Nucl. Acids Res. 11: 3155–3168.PubMedCrossRefGoogle Scholar
  32. Newberry, V., Brosius, J., Garrett, R.A. (1978). Fragment of protein L18 from the E. coli ribosome that contains the 5S RNA binding site. Nucl. Acids Res. 5: 1753–1766.PubMedCrossRefGoogle Scholar
  33. Newberry, V., Garrett, R.A. (1980). The role of the basic N-terminal region of protein L18 in 5S RNA-23S RNA complex formation. Nucl. Acids Res. 8: 4131–4142.PubMedCrossRefGoogle Scholar
  34. Noller, H.F., Garrett, R.A. (1979). Structure of 5S RNA from E. coli: identification of kethoxalreactive sites in the A and B conformations. J. Mol. Biol. 132: 621–636.PubMedCrossRefGoogle Scholar
  35. Norris, K., Norris, F., Christiansen, L., Fiil, N. (1983). Efficient site mutagenesis by simultaneous use of two primers. Nucl. Acids Res. 11: 5103–5112.PubMedCrossRefGoogle Scholar
  36. Osterberg, R., Garrett, R.A. (1977). Small-angle X-ray titration study on the complex formation between 5S RNA and the LI 8 protein of the E. coli 50S particle. Eur. J. Biochem. 79: 67–72.CrossRefGoogle Scholar
  37. Pace, B., Matthews, E.A., Johnson, K.D., Cantor, C.R., Pace, N.R. (1982). Conserved 5S rRNA complement to tRNA is not required for protein synthesis. Proc. Natl. Acad. Sci. USA 79: 36–40.PubMedCrossRefGoogle Scholar
  38. Peattie, D.A. (1979). Direct chemical method for sequencing RNA. Proc. Natl. Acad. Sci. USA 76: 1760–1764.PubMedCrossRefGoogle Scholar
  39. Peattie, D.A., Douthwaite, S.R., Garrett, R.A., Noller, H.F. (1981). A “bulged” double helix in a RNA-protein contact site. Proc. Natl. Acad. Sci. USA 78: 7331–7335.PubMedCrossRefGoogle Scholar
  40. Prince, J.B., Gutell, R.R., Garrett, R.A. (1983). A consensus model of the E. coli ribosome. Trends Biochem. Sci. 8: 359–363.CrossRefGoogle Scholar
  41. Rabin, D., Kao, T., Crothers, D.M. (1983). A characterization of the low temperature structural transition of E. coli 5S RNA by partial enzymic digestion. J. Biol. Chem. 258: 10813–10816.PubMedGoogle Scholar
  42. Spierer, P., Bogdanov, A.A., Zimmermann, R.A. (1978). Parameters for the interactions of proteins L5, LI 8 and L25 with 5S RNA from E. coli. Biochemistry 17: 5394–5398.PubMedCrossRefGoogle Scholar
  43. Spierer, P., Zimmermann, R.A. (1978). Stoichiometry, cooperativity and stability of interactions between 5S RNA and proteins L5, LI 8 and L25 from the 50S subunit of E. coli. Biochemistry 17: 2474–2479.PubMedCrossRefGoogle Scholar
  44. Stahl, D.A., Pace, B., Marsh, T., Pace, N.R. (1984). The ribonucleoprotein substrate for a ribosomal RNA-processing nuclease. J. Biol. Chem. 259: 11448–11453.PubMedGoogle Scholar
  45. Yaguchi, M, Rollin, C.F., Roy, C, Nazar, R.N. (1984). The 5S RNA binding protein from yeast (S. cerevisiae) ribosomes. An RNA binding sequence in the carboxy-terminal region. Eur. J. Biochem. 139: 451–457.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • J. Christiansen
  • R. A. Garrett

There are no affiliations available

Personalised recommendations