Biomechanics of Bone—Implant Interactions

  • R. Huiskes


The possibilities for artificial reconstruction of diseased human joints have improved tremendously since the early 1960s, and the numbers of joint replacements in orthopedic surgery have grown almost exponentially. For the hip and the knee in particular, a multitude of different artificial joint designs are available, usually made of special metal alloys in combination with several kinds of plastics (Walker, 1977). Roughly speaking, artificial joint components can be categorized into intramedullary fixated ones, where a stem is fixed into the medullary canal of a long bone, and surface replacements, which are more or less fixed against the (spongeous) bone at the joint site (Figure 18.1).


Stress Pattern Interface Stress Finite Element Method Model Straight Stem Cement Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed, A.M., Raab, S., and Miller, J.E. 1984. Ortho. Res. 2: 105–118.CrossRefGoogle Scholar
  2. Charnley, J. 1970. Acrylic cement in orthopedic surgery. E. and S. Livingstone, London.Google Scholar
  3. Cowin, S.C. 1981. Pages 193–210 in S.C. Cowin, ed. Mechanical properties of bone. AMD, vol. 45, ASME, New York.Google Scholar
  4. Cowin, S.C., Lanyon, L.E., and Rodan, G., eds. 1984. Proc. Conf. on Functional Adaption in Bone Tissue. Calc. Tiss. Int. 36: s1–sl61.Google Scholar
  5. Feith, R. 1975. Acta Orth. Scand. Suppl.: 161.Google Scholar
  6. Fung, Y.C. 1981. Biomechanics: mechanical properties of living tissues. Springer-Verlag, New York.Google Scholar
  7. Galante, J.O., ed. 1983. Clin. Orth. Rel. Res. 176: 2–108.CrossRefGoogle Scholar
  8. Goldring, S.R., Schiller, A.L., Roelke, M., Rourke, C.M., O’Neill D.A., and Harris, W.H. 1983. J. Bone Joint Surg. 65 [A]: 575–584.Google Scholar
  9. Hampton, S.J. 1981. Ph.D. thesis, University of Illinois, Chicago.Google Scholar
  10. Hampton, S.J., Andriacchi, T.P., Draganich, L.F., and Galante, J.O. 1981. Page 144 in Proc. 27th Ann. Mtg. Orth. Res. Soc.Google Scholar
  11. Hooft, J.P. 1979. De Ingenieur 91: 289.Google Scholar
  12. Huiskes, R. 1979. Acta Orth. Scand. Suppl.: 185.Google Scholar
  13. Huiskes, R. 1984. Pages 121–162 in P. Ducheyne and G.W. Hastings, eds. Functional behavior of orthopaedic biomaterials. Vol. 2, Applications. CRC Press, Inc., Boca Raton, Florida.Google Scholar
  14. Huiskes, R., and Schouten, R.Y. 1980. Pages 213 - 217 in V.C. Mow, ed. 1980 Advances in bioengineering. ASME, New York.Google Scholar
  15. Huiskes, R., Janssen, J.D., and Slooff, T.J. 1981. Pages 211–234 in S.C. Cowin ed. Mechanical properties of bone. AMD, vol. 45, ASME, New York.Google Scholar
  16. Huiskes, R., Janssen, J.D., and Slooff, T.J. 1982. Pages 313–343 in R.H. Gallagher, B.R. Simon, P.C. Johnson, and J.F.Gross, eds. Finite elements in biomechanics. John Wiley & Sons, New York.Google Scholar
  17. Huiskes R., and Chao, E.Y. 1983. J. Biomech. 16:385–409. Huiskes, R., and Nunamaker, D. 1984. Calc. Tiss. Int. 36: s110–s117.CrossRefGoogle Scholar
  18. Huiskes R., and Nunamaker, D. 1984. Calc. Tiss. Int. 36:s110–s117.Google Scholar
  19. Huiskes R., and Strens, P., van Heck., and Slooff, T.J. 1985. Acta Orth. Scand., in press.Google Scholar
  20. Huiskes, R., and Vroemen, W. 1985. In Proc. 31st Ann. Mtg., Orth. Res. Soc. Held at Las Vegas, Nevada, 21–24 Jan.Google Scholar
  21. Klever, F.J., Klumpert, R., Grootenboer, H.J., van Campen, D.H., Panly, T., and Matthiass, H.H. 1983. Pages 55–58 in S.L. Woo and R.E. Mates, eds. 1983 Biomech. Sympos., AMD, vol 56, New York.Google Scholar
  22. Morscher, E. 1983. Pages 188–195 in E. Morscher, ed. Die zementlose Fixation von Hüftenprothesen. Springer-Verlag, Berlin.Google Scholar
  23. Paul, J.P., Hughes, J., and Kenedi, R.M. 1972. In Y.C. Fung, V. Perrone, and M. Anliker, eds. Biomechanics: its foundation and objectives. Prentice-Hall, Engle- wood Cliffs, N.J.Google Scholar
  24. Perren, S.M., Ganz, R., and Rueter, A. 1975. Med. Orth. Tech. 95: 6–10.Google Scholar
  25. Rhinelander, F.W., Nelson, C.L., Stewart, R.D., and Stewart, C.L. 1979. Clin. Orth. Rel. Res. 141: 74–89.Google Scholar
  26. Rohrle, H., Schölten, R., Sigolotto, C., Sollbach, W., and Kellner, H. 1984. J. Biomech. 17: 409–424.CrossRefGoogle Scholar
  27. Rohlmann, A., Moessner, U., Bergmann, G., and Koelbel, R. 1983. J. Biomech. 16: 727–742.CrossRefGoogle Scholar
  28. Stauffer, R.N. 1982. J. Bone Joint Surg. 64 [A]: 983–990.Google Scholar
  29. Walker, P.S. 1977. Human joints and their artificial replacements. Charles Thomas Co., Springfield, Illinois.Google Scholar
  30. Willert, H.G., and Semlitsch, M. 1976. Pages 325–346 in N. Schaldach, and D. Hohmann, eds. Advances in hip and knee-joint technology. Springer Verlag, Berlin.Google Scholar
  31. Woo, S.L-Y. 1981. Pages 107-130 in S.C. Cowin, ed. Mechanical properties of bone. AMD, vol. 45, ASME, New York.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • R. Huiskes

There are no affiliations available

Personalised recommendations