Skip to main content

Abstract

Designing a dosage regimen for a pharmacokinetic system involves: 1) defining a patient-dependent a priori pharmacokinetic model, which includes structural, parameter, and observation uncertainties, and 2) defining an appropriate performance index to evaluate achievement of a clinically chosen therapeutic goal. The control problem then is to choose the dosage that optimizes the expected value of the performance index relative to the uncertainties present. The problem fits within the framework of “stochastic” control theory, i.e., control in the presence of uncertainty. However, little attention has been paid to this approach in clinical contexts. Most pharmacokinetic investigators have simply attacked the problem first by estimating values of the unknown parameters and then by controlling the system as if those parameter estimates were in fact the true values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schumitzky A: Adaptive control in drug therapy. In Ducrot H, et al. (eds): Computer aid to drug therapy and to drug monitoring. North-Holland, Amsterdam, 1978.

    Google Scholar 

  2. D’Argenio DZ, Schumitzky A: A program package for simulation and parameter estimation in pharmacokinetic systems. Computer Programs Biomed 9: 115–134, 1979.

    Article  Google Scholar 

  3. Sheiner LB: Analysis of pharmacokinetic data using parameteric models. 1. Regression models. J Pharmacokin Biopharm 12: 93–117, 1984

    Article  CAS  Google Scholar 

  4. Brown RF: Compartment system analysis: state of the art. IEEE Trans Biomed Eng BME-27, 1–11, 1980.

    Article  CAS  Google Scholar 

  5. Godfrey K: Compartmental models and their application. Academic Press, London, 1983.

    Google Scholar 

  6. D’Argenio DZ: Optimal sampling times for pharmacokinetic experiments. J Pharmacokin Biopharm 9: 739–756, 1981.

    Article  Google Scholar 

  7. Sheiner LB, Halkin H, Peck CP, Rosenberg B, Melmon KL: Improved computer-assisted digoxin therapy. Ann Int Med 82: 619–627, 1975.

    PubMed  CAS  Google Scholar 

  8. Sawchuk RJ, Zaske DE, Cipolle RJ, Wargin WA, Strate RG: Kinetic model for gentamicin dosing with the use of individual patient parameters. Clin Pharmacol Ther 21: 362–369, 1977.

    PubMed  CAS  Google Scholar 

  9. Jelliffe RW: Open-loop-feedback control of serum drug concentrations: pharmacokinetic approaches to drug therapy. Med Instrumen 4: 267–273, 1983.

    Google Scholar 

  10. Gaillot J, Steimer J-LJ, Mallet AJ, Thebault JJ, Bieder A: A priori lithium dosage regimen using population characteristics of pharmacokinetic parameters. J Pharmacokin Biopharm 7: 579–628, 1979.

    Article  CAS  Google Scholar 

  11. Richter O, Reinhardt D: Methods for evaluating optimal dosage regimens and their application to theophylline. Int J Clin Pharm Ther Tox 20: 564–575, 1982.

    CAS  Google Scholar 

  12. Bard Y: Nonlinear parameter estimation. Academic Press, New York, 1974.

    Google Scholar 

  13. Peck CC, Sheiner LB, Nichols AC: The problem of choosing weights in nonlinear regression analysis of pharmacokinetic data. Drug Metab Rev 15: 133–148, 1984.

    Article  PubMed  CAS  Google Scholar 

  14. Katz D, Azen SP, Schumitzky A: Bayesian approach to the analysis of nonlinear models: implementation and evaluation. Biometrics 37: 137–142, 1981.

    Article  Google Scholar 

  15. Bellman R: Adaptive control processes: a guided tour. Princeton University Press, Princeton, 1961.

    Google Scholar 

  16. Bertsekas DP: Dynamic programming and stochastic control. Academic Press, New York, 1976.

    Google Scholar 

  17. Bar-Shalom Y, Tse E: Concepts and methods in stochastic control. In Leondes CI (ed): Control and dynamic systems, vol. 12. Academic Press, New York, 1976.

    Google Scholar 

  18. Sorenson HW: An overview of filtering and stochastic control in dynamic systems. In Leondes CI (ed): Control and dynamic systems, vol. 12. Academic Press, New York, 1976.

    Google Scholar 

  19. Athans M (ed): Special issue on Linear Quadratic Gaussian problem. IEEE Trans Automatic Control AC-16, 1971.

    Google Scholar 

  20. Powers WF, Abbrecht PH, Covel DG: Systems and microcomputer approach to anticoagulant therapy. IEEE Trans Biomed Eng BME-27: 520–523, 1980.

    Article  CAS  Google Scholar 

  21. Athans M, Castanon D, Dunn K, Greene CS, Lee WH, Sandeil NR, Willsky AS: The stochastic control of the F-8C aircraft using a multiple model adaptive control method. IEEE Trans Automatic Control AC-22: 768–780, 1977.

    Article  Google Scholar 

  22. Jazwinski A: Stochastic processes and filtering theory. Academic Press, New York, 1970.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Schumitzky, A. (1986). Stochastic Control of Pharmacokinetic Systems. In: Maronde, R.F. (eds) Topics in Clinical Pharmacology and Therapeutics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4864-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4864-4_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9336-1

  • Online ISBN: 978-1-4612-4864-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics