Skip to main content

Respiration

  • Chapter
Avian Physiology

Abstract

The avian respiratory system is unique among vertebrates in its structure and in the manner by which it accomplishes its main function, that of providing oxygen (O2) to and removing carbon dioxide (CO2) from the blood. The model of the oxygen delivery system in Figure 8-1 shows the importance of this system in allowing normal cellular metabolism. This model illustrates that ventilation of the lung, along with gas exchange in the pulmonary capillaries, is coupled to the cardiovascular function of transporting oxygen to the body cells where it moves across capillary walls. The mitochondria are the ultimate O2 sinks and provide most of the high-energy phosphate compounds required for cellular function. For CO2, the route is from mitochondria to lung gas and atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdalla, M.A., and A.S. King. (1975). The functional anatomy of the pulmonary circulation of the domestic fowl. Respir. Physiol., 23, 267.

    PubMed  CAS  Google Scholar 

  • Abdalla, M.A., J.N. Maina, A.S. King, D.Z. King, and J. Henry. (1982). Morphometries of the avian lung. 1. The domestic fowl (Gallus gallus variant domesticus). Respir. Physiol., 47, 267.

    PubMed  CAS  Google Scholar 

  • Abdel-Magied, E.M., and A.S. King. (1978). The topographical anatomy and blood supply of the carotid body region of the domestic fowl. J. Anat., 126, 535.

    PubMed  CAS  Google Scholar 

  • Abdel-Magied, E.M., and A.S. King. (1982). Effects of distal vagal ganglionectomy and midcervical vagotomy on the ultrastructure of axonal elements in the carotid body of the domestic fowl. J. Anat., 134, 643.

    PubMed  CAS  Google Scholar 

  • Arad, Z., and J. Marder. (1983). Acid-base regulation during thermal panting in the fowl (Gallus domesticus): Comparison between breeds. Comp. Biochem. Physiol., 74A, 125.

    CAS  Google Scholar 

  • Baldwin, J.K. (1973). Mechanics of respiration in euthermic and hyperthermic Gallus domesticus. Ph.D. Thesis, University of California, Davis.

    Google Scholar 

  • Ballam, G.O., T.L. Clanton, and A.L. Kunz. (1982). Ventilatory phase duration in the chicken: role of mechanical and CO2 feedback. J. Appl. Physiol., 53, 1378.

    PubMed  CAS  Google Scholar 

  • Bamford, O.S., and D.R. Jones. (1974). On the initiation of apnoea and some cardiovascular responses to submer-gence in ducks. Respir. Physiol., 22, 199.

    PubMed  CAS  Google Scholar 

  • Banzett, R.B., and R.E. Burger. (1977). Response of avian intrapulmonary chemoreceptors to venous CO2 and ventilatory gas flow. Respir. Physiol., 29, 63.

    PubMed  CAS  Google Scholar 

  • Barker, M.R., R.E. Burger, and P.C.G. Nye. (1981). Respiratory inhibition from chicken intrapulmonary chemoreceptors reduced by increasing rate of repetitive PCO2 changes. Q.J. Exp. Physiol., 66, 367.

    PubMed  CAS  Google Scholar 

  • Barnas, G.M., and R.E. Burger. (1983). Interaction of temperature with extra- and intrapulmonary chemoreceptor control of ventilatory movements in the awake chicken. Respir. Physiol., 54, 223.

    PubMed  CAS  Google Scholar 

  • Barnas, G.M., F.B. Mather, and M.R. Fedde. (1978a). Response of avian intrapulmonary smooth muscle to changes in carbon dioxide concentration. Poult. Sci., 57, 1400.

    PubMed  CAS  Google Scholar 

  • Barnas, G.M., F.B. Mather, and M.R. Fedde. (1978b). Are avian intrapulmonary CO2 receptors chemically modulated mechanoreceptors or chemoreceptors? Respir. Physiol., 35, 237.

    PubMed  CAS  Google Scholar 

  • Barnas, G.M., J.A. Estavillo, F.B. Mather, and R.E. Burger. (1981). The effect of CO2 and temperature on respiratory movements in the chicken. Respir. Physiol., 43, 315.

    PubMed  CAS  Google Scholar 

  • Barnas, G.M., S.C. Hempleman, and R.E. Burger. (1983). Effect of temperature on the CO2 sensitivity of avian intrapulmonary chemoreceptors. Respir. Physiol., 54, 233.

    PubMed  CAS  Google Scholar 

  • Barnas, G., K. Muckenhoff, and P. Scheid. (1984). Intrapulmonary chemoreceptors in the pigeon Columba livia. Pfleugers Arch., 400 (Suppl.), R58.

    Google Scholar 

  • Bartels, H., C. Christoforides, J. Hedley-Whyte, and L. Laasberg. (1971). Solubility coefficients of gases. In “Biological Handbooks: Respiration and Circulation” (P.L. Altman and D.S. Dittman, Eds.). Bethesda: Federation of American Societies for Experimental Biology, p. 18.

    Google Scholar 

  • Baumann, R., and F.H. Baumann. (1978). Respiratory function of embryonic chicken hemoglobin. In “Respiratory Function in Birds, Adult and Embryonic” (J. Piiper, Ed.). Berlin: Springer-Verlag, p. 292.

    Google Scholar 

  • Baumann, R., S. Padeken, E.-A. Haller, and T. Brilmayer. (1983). Effects of hypoxia on oxygen affinity, hemoglobin pattern, and blood volume of early chicken embryos. Am. J. Physiol., 244, R733.

    PubMed  CAS  Google Scholar 

  • Bech, C, and K. Johansen. (1980). Ventilation and gas exchange in the mute swan (Cygnus olor). Respir. Physiol., 39, 285.

    PubMed  CAS  Google Scholar 

  • Berger, P.J., and R.D. Tallman, Jr. (1982). Lengthening of inspiration by intrapulmonary chemoreceptor discharge in ducks. J. Appl. Physiol., 53, 1392.

    PubMed  CAS  Google Scholar 

  • Berger, P.J., R.D. Tallman, Jr., and A.L. Kunz. (1980). Discharge of intrapulmonary chemoreceptors and its modulation by rapid Fico changes in decerebrate ducks. Respir. Physiol. 42, 123. 2

    Google Scholar 

  • Bernstein, M.H., and F.C. Samaniego. (1981). Ventilation and acid-base status during thermal panting in pigeons (Columba livia). Physiol. Zool., 54, 308.

    Google Scholar 

  • Black, C.P., and S.M. Tenney. (1980). Oxygen transport during progressive hypoxia in high-altitude and sea-level waterfowl. Respir. Physiol., 39, 217.

    PubMed  CAS  Google Scholar 

  • Boggs, D.F., and G.F. Birchard. (1983). Relationship between haemoglobin O2 affinity and the ventilatory response to hypoxia in the rhea and pheasant. J. Exp. Biol., 1O2, 347.

    Google Scholar 

  • Boggs, D.F., and D.L. Kilgore, Jr. (1983). Ventilatory responses of the burrowing owl and bobwhite to hypercarbia and hypoxia. J. Comp. Physiol., 149, 527.

    Google Scholar 

  • Boggs, D.F., D.L. Kilgore, Jr., and G.F. Birchard. (1984). Respiratory physiology of burrowing mammals and birds. Comp. Biochem. Physiol. 77A, 1.

    Google Scholar 

  • Boon, J.K., W.D. Kuhlmann, and M.R. Fedde. (1980). Control of respiration in the chicken: Effects of venous CO2 loading. Respir. Physiol., 39, 169.

    PubMed  CAS  Google Scholar 

  • Boon, J.K., M.R. Fedde, and P. Scheid. (1982). A method for localizing intrapulmonary chemoreceptors in the para- bronchial mantle of the duck. Comp. Biochem. Physiol. 72A, 463.

    CAS  Google Scholar 

  • Bouverot, P. (1978a). Control of breathing in birds compared with mammals. Physiol. Rev., 58, 604.

    PubMed  CAS  Google Scholar 

  • Bouverot, P. (1978b). Role of arterial chemoreceptors in ventilatory acclimation to high altitude in unanesthetized Pekin ducks. In “Respiratory Function in Birds, Adult and Embryonic” (J. Piiper, Ed.). Berlin: Springer-Verlag, p. 84.

    Google Scholar 

  • Bouverot, P. (1981). Hypoxia tolerance and ventilatory O2- chemoreflexes. In Advances in Physiological Sciences, Vol. 10, Respiration (I. Hutàs and L.A. Debreczeni, Eds.). Elmsford, New York: Pergamon Press, p. 145.

    Google Scholar 

  • Bouverot, P., and L.-M. Leitner. (1972). Arterial chemoreceptors in the domestic fowl. Respir. Physiol., 15, 310.

    PubMed  CAS  Google Scholar 

  • Bouverot, P., and P. Sébert. (1979). O2-chemoreflex drive of ventilation in awake birds at rest. Respir. Physiol., 37, 201.

    PubMed  CAS  Google Scholar 

  • Bouverot, P., N. Hill, and Y. Jammes. (1974). Ventilatory responses to CO2 in intact and chronically chemodenervated Pekin ducks. Respir. Physiol., 22, 1237.

    Google Scholar 

  • Bouverot, P., G. Hildwein, and P. Oulhen. (1976). Ventilatory and circulatory O2 convection at 4000 m in pigeon at neutral or cold temperature. Respir. Physiol., 28, 371.

    PubMed  CAS  Google Scholar 

  • Bouverot, P., D. Douguet, and P. Sébert. (1979). Role of the arterial chemoreceptors in ventilatory and circulatory adjustments to hypoxia in awake Pekin ducks. J. Comp. Physiol., 133, 177.

    Google Scholar 

  • Brackenbury, J.H. (1971a). Pressure-flow phenomena within the avian respiratory system. J. Anat., 108, 609.

    Google Scholar 

  • Brackenbury, J.H. (1971b). Airflow dynamics in the avian lung as determined by direct and indirect methods. Respir., Physiol., 13, 319.

    CAS  Google Scholar 

  • Brackenbury, J.H. (1972a). Physical determinants of air flow pattern within the avian lung. Respir. Physiol., 15, 384.

    PubMed  CAS  Google Scholar 

  • Brackenbury, J.H. (1972b). Lung-air-sac anatomy and respiratory pressures in the bird. J. Exp. Biol., 57, 543.

    PubMed  CAS  Google Scholar 

  • Brackenbury, J.H. (1973). Respiratory mechanics in the bird. Comp. Biochem. Physiol. 44A, 599.

    CAS  Google Scholar 

  • Brackenbury, J.H. (1978). Experimentally induced antagonism of chemical and thermal reflexes in the respiratory system of fully conscious chickens. Respir. Physiol., 34, 377.

    PubMed  CAS  Google Scholar 

  • Brackenbury, J. (1979). Corrections to the Hazelhoff model of airflow in the avian lung. Respir. Physiol., 36, 143.

    PubMed  CAS  Google Scholar 

  • Brackenbury, J.H. (1980). Respiration and production of sounds by birds. Biol. Rev., 55, 363.

    Google Scholar 

  • Brackenbury, J.H. (1981). Airflow and respired gases within the lung-air-sac system of birds. Comp. Biochem. Physiol. 68A, 1.

    Google Scholar 

  • Brackenbury, J.H., and A.R. Akester. (1978). A model of the capillary zone of the avian tertiary bronchus. In “Respiratory Function in Birds, Adult and Embryonic” (J. Piiper, Ed.). New York: Springer-Verlag, p. 125.

    Google Scholar 

  • Brackenbury, J.H., and M. Gleeson (1983). Effects of PCO2 on respiratory pattern during thermal and exercise hyperventilation in domestic fowl. Respir. Physiol., 54, 109.

    PubMed  CAS  Google Scholar 

  • Brackenbury, J.H., P. Avery, and M. Gleeson. (1981). Respi-ration in exercising fowl. I. Oxygen consumption, respiratory rate and respired gases. J. Exp. Biol., 93, 317.

    PubMed  CAS  Google Scholar 

  • Brackenbury, J.H., P. Avery, and M. Gleeson. (1982). Effects of temperature on the ventilatory response to inspired CO2 in unanesthetized domestic fowl. Respir. Physiol., 49, 235.

    PubMed  CAS  Google Scholar 

  • Bretz, W.L., and K. Schmidt-Nielsen. (1971). Bird respiration: Flow patterns in the duck lung. J. Exp. Biol., 54, 103.

    PubMed  CAS  Google Scholar 

  • Burger, R.E. (1980). Respiratory gas exchange and control in the chicken. Poult. Sci., 59, 2654.

    PubMed  CAS  Google Scholar 

  • Burger, R.E., J.L. Osborne, and R.B. Banzett. (1974). Intrapulmonary chemoreceptors in Gallus domesticus: Adequate stimulus and functional localization. Respir. Physiol., 22, 87.

    PubMed  CAS  Google Scholar 

  • Burger, R.E., P.C.G. Nye, F.L. Powell, C. Ehlers, M. Barker, and M.R. Fedde. (1976a). Response to CO2 of intrapulmonary chemoreceptors in the emu. Respir. Physiol., 28, 315.

    PubMed  CAS  Google Scholar 

  • Burger, R.E., J.C.G. Coleridge, H.M. Coleridge, P.C.G. Nye, F.L. Powell, C. Ehlers, and R.B. Banzett. (1976b). Chemoreceptors in the paleopulmonic lung of the emu: Discharge patterns during cyclic ventilation. Respir. Physiol., 28, 249.

    PubMed  CAS  Google Scholar 

  • Burger R.E., M. Meyer, W. Graf, and P. Scheid. (1979). Gas exchange in the parabronchial lung of birds: Experiments in unidirectionally ventilated ducks. Respir. Physiol., 36, 19.

    PubMed  CAS  Google Scholar 

  • Burns, B., A.E. James, G. Hutchins, G. Novak, and R.R. Price. (1978). Ventilatory 133-Xenon distribution studies in the duck (Anas platyrhynchos). In “Respiratory Function in Birds, Adult and Embryonic” (J. Piiper, Ed.). New York: Springer-Verlag, p. 129.

    Google Scholar 

  • Burton, R.R., and A.H. Smith. (1968). Blood and air volumes in the avian lung. Poult. Sci., 47, 85.

    PubMed  CAS  Google Scholar 

  • Butler, P.J., and M.P. Osborne. (1975). The effect of cervical vagotomy (decentralization) on the ultrastructure of the carotid body of the duck, Anas platyrhynchos. Cell Tissue Res., 163, 491.

    PubMed  CAS  Google Scholar 

  • Butler, P.J., and E.W. Taylor. (1983). Factors affecting the respiratory and cardiovascular responses to hypercapnic hypoxia, in mallard ducks. Respir. Physiol., 53, 109.

    PubMed  CAS  Google Scholar 

  • Calder, W.A. (1968). Respiratory and heart rates of birds at rest. Condor, 70, 358.

    Google Scholar 

  • Calder, W.A., and K. Schmidt-Nielsen. (1968). Panting and blood carbon dioxide in birds. Am. J. Physiol., 215, 477.

    PubMed  CAS  Google Scholar 

  • Callanan, D., M. Dixon, J.G. Widdicombe, and J.C.M. Wise. (1974). Responses of geese to inhalation of irritant gases and injections of phenyl diguanide. Respir. Physiol., 22, 157.

    PubMed  CAS  Google Scholar 

  • Chiang, M.J., P.J. Berger, and A.L. Kunz. (1978). A study of the effect of SO2 on pacing and intrapulmonary chemoreceptor discharge in the domestic fowl. Respir. Physiol., 33, 229.

    PubMed  CAS  Google Scholar 

  • Clanton, T.L., G.O. Ballam, R.K. Moore, and A.L. Kunz. (1982). Rapid ventilatory responses to changes in insufflated CO2 in awake roosters. J. Appl. Physiol., 53, 1371.

    PubMed  CAS  Google Scholar 

  • Cohn, J.E., and R. Shannon. (1968). Respiration in unanesthetized geese. Respir. Physiol., 5, 259.

    Google Scholar 

  • Crank, W.D., and R.R. Gallagher. (1978). Theory of gas exchange in the avian parabronchus. Respir. Physiol., 35, 9.

    PubMed  CAS  Google Scholar 

  • Crank, W.D., W.D. Kuhlmann, and M.R. Fedde. (1980). Functional localization of avian intrapulmonary CO2 receptors within the parabronchial mantle. Respir. Physiol., 41, 71.

    PubMed  CAS  Google Scholar 

  • Crawford, E.C., Jr., and G. Kampe. (1971). Resonant panting in pigeons. Comp. Biochem. Physiol. 40A, 549.

    Google Scholar 

  • Dejours, P. (1981). “Principles of Comparative Respiratory Physiology,” 2nd ed. Amsterdam: Elsevier/North-Holland Biomedical Press, p. 185.

    Google Scholar 

  • deWet, P.D., M.R. Fedde, and R.L. Kitchell. (1967). Innervation of the respiratory muscles of Gallus domesticus. J. Morphol., 123, 17.

    PubMed  CAS  Google Scholar 

  • Dreyer, M.V., H.P.A. DeBoom, P.D. deWet, J.M.W. LeRoux, D.J. Coetzer, and F. Eloff. (1977). Excision and localization of the avian (Gallus domesticus) carotid body. Acta Anat., 99, 192.

    PubMed  CAS  Google Scholar 

  • Dreyer, M.V., H.P.A. DeBoom, P.D. deWet, N. Hugo, and F. Eloff. (1978). Histocytology of the avian (Gallus domesticus) carotid body. Acta Anat., 1O2, 217.

    PubMed  CAS  Google Scholar 

  • Dubach, M. (1981). Quantitative analysis of the respiratory system of the house sparrow, budgerigar and violet-eared hummingbird. Respir. Physiol., 46, 43.

    PubMed  CAS  Google Scholar 

  • Dubbeldam, J.L., E.R. Brus, S.B.J. Menken, and S. Zeilstra. (1979). The central projections of the glossopharyngeal and vagus ganglia in the mallard, Anas platyrhynchos L. J. Comp. Neurol., 183, 149.

    CAS  Google Scholar 

  • Duke, G.E., W.D. Kuhlmann, and M.R. Fedde. (1977). Evidence of mechanoreceptors in the muscular stomach of the chicken. Poult. Sci., 56, 297.

    PubMed  CAS  Google Scholar 

  • Duncker, H.-R. (1971). The lung air sac system of birds. A contribution to the functional anatomy of the respiratory apparatus. Ergeb. Anat. Entwicklungsgesch., 45 (6), 1.

    Google Scholar 

  • Duncker, H.-R. (1972). Structure of avian lungs. Respir. Physiol., 14, 44.

    PubMed  CAS  Google Scholar 

  • Duncker, H.-R. (1974). Structure of the avian respiratory tract. Respir. Physiol., 22, 1.

    PubMed  CAS  Google Scholar 

  • Duncker, H.-R. (1978a). General morphological principles of amniotic lungs. In “Respiratory Function in Birds, Adult and Embryonic” (J. Piiper, Ed.). New York: Springer-Verlag, p. 2.

    Google Scholar 

  • Duncker, H.-R. (1978b). Funktionsmorphologie des Atemapparates und Coelomgliederung bei Reptilien, Vögeln und Säugern. Verh. Dtsch. Zool. Ges., 71, 99.

    Google Scholar 

  • Duncker, H.-R. (1978c). Development of the avian respiratory and circulatory systems. In “Respiratory Function in Birds, Adult and Embryonic” (J. Piiper, Ed.). New York: Springer-Verlag, p. 260.

    Google Scholar 

  • Duncker, H.-R. (1981). Stammesgeschichte der Struktur- und Funktionsprinzipien der Wirbeltierlungen. Verh. Anat. Ges., 75, 279.

    PubMed  CAS  Google Scholar 

  • Eaton, J.A., Jr., and M.R. Fedde. (1978). Biogenic amine- containing cells in the chicken lung. Poult. Sci., 57, 793.

    PubMed  CAS  Google Scholar 

  • Eaton, J.A., Jr., M.R. Fedde, and R.E. Burger. (1971). Sensitivity to inflation of the respiratory system in the chicken. Respir. Physiol., 11, 167.

    PubMed  Google Scholar 

  • Faraci, F.M., D.L. Kilgorejr., and M.R. Fedde. (1984). Oxygen delivery to the heart and brain during hypoxia: Pekin duck vs. Bar-headed goose. Am. J. Physiol., 247, R69.

    CAS  Google Scholar 

  • Fedde, M.R. (1970). Peripheral control of avian respiration. Fed. Proc. Fed. Am. Soc. Exp. Biol., 29, 1664.

    CAS  Google Scholar 

  • Fedde, M.R. (1976). Respiration. In “Avian Physiology,” 3rd ed. (P.D. Sturkie, Ed.). New York: Springer-Verlag, p. 122.

    Google Scholar 

  • Fedde, M.R. (1980). Structure and gas-flow pattern in the avian respiratory system. Poult. Sci., 59, 2642.

    PubMed  CAS  Google Scholar 

  • Fedde, M.R. (1981). Intrapulmonary CO2 receptors and their role in the control of avian respiration. In “Advances in Physiological Sciences, Vol. 10. Respiration” (I. Hutäs and L.A. Debreczeni, Eds.). Elmsford, New York: Pergamon Press, p. 147.

    Google Scholar 

  • Fedde, M.R., and D.F. Peterson. (1970). Intrapulmonary receptor response to changes in airway-gas composition in Gallus domesticus. J. Physiol. (London), 209, 609.

    CAS  Google Scholar 

  • Fedde, M.R., and W.D. Kuhlmann. (1975). PO2 changes during analysis of chicken arterial blood. Comp. Biochem. Physiol. 50A, 633.

    CAS  Google Scholar 

  • Fedde, M.R., and W.D. Kuhlmann. (1978). Intrapulmonary carbon dioxide sensitive receptors: Amphibians to mammals. In “Respiratory Function in Birds, Adult and Embryonic” (J. Piiper, Ed.). Berlin: Springer-Verlag, p. 33.

    Google Scholar 

  • Fedde, M.R., and P. Scheid. (1976). Intrapulmonary CO2 receptors in the duck: IV. Discharge pattern of the population during a respiratory cycle. Respir. Physiol., 26, 223.

    PubMed  CAS  Google Scholar 

  • Fedde, M.R., and G.H. Cardinet, III. (1977). Histochemical studies of respiratory muscles of chicken. Am. J. Vet. Res., 38, 585.

    PubMed  CAS  Google Scholar 

  • Fedde, M.R., R.E. Burger, and R.L. Kitchell. (1963). The effect of anesthesia and age on respiration following bilateral, cervical vagotomy in the fowl. Poult. Sci., 42, 1212.

    Google Scholar 

  • Fedde, M.R., R.E. Burger, and R.L. Kitchell. (1964a). Electromyographic studies of the effects of bodily position and anesthesia on the activity of the respiratory muscles of the domestic cock. Poult. Sci., 43, 839.

    Google Scholar 

  • Fedde, M.R., R.E. Burger, and R.L. Kitchell. (1964b). Elec-tromyographic studies of the effects of bilateral, cervical vagotomy on the action of the respiratory muscles of the domestic cock. Poult. Sci., 43, 1119.

    Google Scholar 

  • Fedde, M.R., R.E. Burger, and R.L. Kitchell. (1964c). Anatomic and electromyographic studies of the costopulmonary muscles in the cock. Poult. Sci., 43, 1177.

    Google Scholar 

  • Fedde, M.R., P.D. deWet, and R.L. Kitchell. (1969). Motor unit recruitment pattern and tonic activity in respiratory muscles of Gallus domesticus. J. Neurophysiol., 32, 995.

    PubMed  CAS  Google Scholar 

  • Fedde, M.R., R.N. Gatz, H. Slama, and P. Scheid. (1974a). Intrapulmonary CO2 receptors in the duck: I. Stimulus specificity. Respir. Physiol., 22, 99.

    PubMed  CAS  Google Scholar 

  • Fedde, M.R., R.N. Gatz, H. Slama, and P. Scheid. (1974b). Intrapulmonary CO2 receptors in the duck: II. Comparison with mechanoreceptors. Respir. Physiol., 22, 115.

    PubMed  CAS  Google Scholar 

  • Fedde, M.R., J.P. Kiley, and W.D. Kuhlmann. (1980). Are avian intrapulmonary chemoreceptors involved in the control of breathing? In “Acta XVII Congressus Internationalis Ornithologici” (R. Nohring, Ed.). Berlin: Deutsche Ornithologen-Gesellschaft, p. 360.

    Google Scholar 

  • Fedde, M.R., R.E. Burger, J. Geiser, R.K. Gratz, J.A. Estavillo, and P. Scheid. (1981). Effects of dead space on caudal air sac gas composition in the goose. Physiologist, 24, 131.

    Google Scholar 

  • Fedde, M.R., J.P. Kiley, F.L. Powell, and P. Scheid. (1982). Intrapulmonary CO2 receptors and control of breathing in ducks: Effects of prolonged circulation time to carotid bodies and brain. Respir. Physiol., 47, 121.

    PubMed  CAS  Google Scholar 

  • Fowle, A.S.E., and S. Weinstein. (1966). Effect of cutaneous electric shock on ventilatory response of birds to carbon dioxide. Am. J. Physiol., 210, 293.

    PubMed  CAS  Google Scholar 

  • Fujii, S., T. Tamura, and T. Okamoto. (1981). Microarchitecture of air capillaries and blood capillaries in the respiratory area of the hen’s lung examined by scanning electron microscopy. Jpn. J. Vet. Sci., 43, 83.

    CAS  Google Scholar 

  • Gillespie, J.R., J.P. Gendner, J.C. Sagot, and P. Bouverot. (1982a). Impedance of the lower respiratory system in ducks measured by forced oscillations during normal breathing. Respir. Physiol., 47, 51.

    PubMed  CAS  Google Scholar 

  • Gillespie, J.R., J.P. Gendner, J.C. Sagot, and P. Bouverot. (1982b). Respiratory mechanics of Pekin ducks under four conditions: Pressure breathing, anesthesia, paralysis or breathing CO2-enriched gas. Respir. Physiol., 47, 177.

    PubMed  CAS  Google Scholar 

  • Gleeson, M., and J.H. Brackenbury. (1983). Respiratory and blood gas responses in exercising birds. Comp. Biochem. Physiol. 76A, 211.

    CAS  Google Scholar 

  • Gleeson, M., and J.H. Brackenbury. (1984). Effects of body temperature on ventilation, blood gases and acid-base balance in exercising fowl. Q. J. Exp. Physiol., 69, 61.

    PubMed  CAS  Google Scholar 

  • Grima, M., and H. Girard. (1981). Oxygen consumption by chick blood cells during embryonic and post-hatch growth. Comp. Biochem. Physiol. 69A, 437.

    Google Scholar 

  • Groth, H.-P. (1972). Licht- und fluoreszenzmikroskopische Untersuchungen zur Innervation des Luftsacksystems der Vogel. Z. Zellforsch. Mikrosk. Anat., 127, 87.

    PubMed  CAS  Google Scholar 

  • Hart, J.S., and O.Z. Roy. (1966). Respiratory and cardiac responses to flight in pigeons. Physiol. Zool., 39, 291.

    Google Scholar 

  • Hinds, D.S., and W.A. Calder. (1971). Tracheal dead space in the respiration of birds. Evolution, 25, 429.

    Google Scholar 

  • Hodges, R.D., A.S. King, D.Z. King, and E.I. French. (1975). The general ultrastructure of the carotid body of the domestic fowl. Cell Tissue Res., 162, 483.

    PubMed  CAS  Google Scholar 

  • Isaacks, R.E., and D.R. Harkness. (1980). Erythrocyte organic phosphates and hemoglobin function in birds, reptiles, and fishes. Am. Zool., 20, 115

    CAS  Google Scholar 

  • Isaacks, R.E., D.R. Harkness, J.L. Adler, and P.H. Goldman. (1976). Studies on avian erythrocyte metabolism. Effect of organic phosphates on oxygen affinity of embryonic and adult-type hemoglobins of the chick embryo. Arch. Biochem. Biophys., 173, 114.

    PubMed  CAS  Google Scholar 

  • Isaacks, R.E., C.Y. Kim, T.J. Legato, A.E. Johnson, P.H. Goldman, D.R. Harkness, and A. Costa. (1980). Studies on avian erythrocyte metabolism. IX. Relationship of changing organic phosphate composition to whole blood oxygen affinity during development of the ostrich (Struthio camelus camelus). Dev. Biol., 75, 485.

    PubMed  CAS  Google Scholar 

  • Isaacks, R., C.Y. Kim, H.L. Liu, P.H. Goldman, A. Johnson, Jr., and D.R. Harkness. (1983). Studies on avian erythrocyte metabolism. XIII. Changing organic phosphate composition in age-dependent density populations of chicken erythrocytes. Poult. Sci., 62, 1639.

    PubMed  CAS  Google Scholar 

  • James, A.E., G. Hutchins, M. Bush, T.K. Natarajan, and B. Burns. (1976). How birds breathe: Correlation of radiographic with anatomical and pathological studies. J. Am. Vet. Radiol. Soc., 17, 77.

    Google Scholar 

  • Jammes, Y., and P. Bouverot. (1975). Direct PCO2 measurements in the dorsobronchial gas of awake Pekin ducks: Evidence for a physiological role of the neopulmo in respiratory gas exchanges. Comp. Biochem. Physiol. 52A, 635.

    CAS  Google Scholar 

  • Jones, D.R., and M.J. Purves. (1970). The effect of carotid body denervation upon the respiratory response to hypoxia and hypercapnia in the duck. J. Physiol. (London), 211, 295.

    CAS  Google Scholar 

  • Jones, D.R., and G.F. Holeton. (1972). Cardiovascular and respiratory responses of ducks to progressive hypocapnic hypoxia. J. Exp. Biol., 56, 657.

    PubMed  CAS  Google Scholar 

  • Jones, D.R., and O.S. Bamford. (1978). The immediate effects of deafferentation of the lungs on heart and breathing frequencies in ducks. Can. J. Zool., 56, 149.

    Google Scholar 

  • Jones, D.R., and W.K. Milsom. (1982). Peripheral receptors affecting breathing and cardiovascular function in non-mammalian vertebrates. J. Exp. Biol., 100, 59.

    Google Scholar 

  • Jones, J.H., E.L. Effmann, and K. Schmidt-Nielsen. (1981). Control of air flow in bird lungs: Radiographic studies. Respir. Physiol., 45, 121.

    PubMed  CAS  Google Scholar 

  • Jones, J.H., B. Grubb, and K. Schmidt-Nielsen. (1983). Panting in the emu causes arterial hypoxemia. Respir. Physiol., 54, 189.

    PubMed  CAS  Google Scholar 

  • Kadono, H., and T. Okada. (1962). Electromyographic studies on the respiratory muscles of the domestic fowl. Jpn. J. Vet. Sci., 24, 215.

    Google Scholar 

  • Kadono, H., T. Okada, and K. Ono. (1963). Electromyographic studies on the respiratory muscles of the chicken. Poult. Sci., 42, 121.

    Google Scholar 

  • Kampe, G., and E.C. Crawford, Jr. (1973). Oscillatory mechanics of the respiratory system of pigeons. Respir. Physiol., 18, 188.

    PubMed  CAS  Google Scholar 

  • Kawashiro, T., and P. Scheid. (1975). Arterial blood gases in undisturbed resting birds: Measurements in chicken and duck. Respir. Physiol., 23, 337.

    PubMed  CAS  Google Scholar 

  • Keijer, E., and P.J. Butler. (1982). Volumes of the respiratory and circulatory systems in tufted and mallard ducks. J. Exp. Biol., 101, 213.

    Google Scholar 

  • Kiley, J.P., and M.R. Fedde. (1983a). Cardiopulmonary control during exercise in the duck. J. Appl. Physiol., 55, 1574.

    PubMed  CAS  Google Scholar 

  • Kiley, J.P., and M.R. Fedde. (1983b). Exercise hyperpnea in the duck without intrapulmonary chemoreceptor involvement. Respir. Physiol., 53, 355.

    PubMed  CAS  Google Scholar 

  • Kiley, J.P., W.D. Kuhlmann, and M.R. Fedde. (1979). Respiratory and cardiovascular responses to exercise in the duck. J. Appl. Physiol., 47, 827.

    PubMed  CAS  Google Scholar 

  • Kiley, J.P., W.D. Kuhlmann, and M.R. Fedde. (1982). Ventilatory and blood gas adjustments in exercising isothermic ducks. J. Comp. Physiol., 147, 107.

    CAS  Google Scholar 

  • Kilgore, D.L., Jr., F.M. Faraci, and M.R. Fedde. (1984). Static response characteristics of intrapulmonary chemoreceptors in the pigeon and the burrowing owl, a species with a blunted ventilatory sensitivity to carbon dioxide. Fed. Proc. Fed. Am. Soc. Exp. Biol., 43, 638.

    Google Scholar 

  • King, A.S. (1966a). Structural and functional aspects of the avian lungs and air sacs. In “International Review of General and Experimental Zoology,” Vol. 2 (W.J.L. Felts and R.J. Harrison, Eds.). New York: Academic Press, p. 171.

    Google Scholar 

  • King, A.S . (1966b). Afferent pathways in the vagus and their influence on avian breathing: A review. In “Physiology of the Domestic Fowl” (C. Horton-Smith and E.C. Amoroso, Eds.). London: Oliver and Boyd, p. 3O2.

    Google Scholar 

  • King, A.S. (1975). Aves respiratory system. In “The Anatomy of the Domestic Animals,” 5th ed., Vol. 2 (R. Getty, Ed.). Philadelphia: Saunders, Chapter 64, p. 1883.

    Google Scholar 

  • King, A.S. (1979). Systema respiratorium. In “Nomina Anatomica Avium” (J.J. Baumel, A.S. King, A.M. Lucas, J.E. Breazile, and H.E. Evans, Eds.). London: Academic Press, p. 227.

    Google Scholar 

  • King, A.S., and A.F. Cowie. (1969). The functional anatomy of the bronchial muscle of the bird. J. Anat., 105, 323.

    PubMed  CAS  Google Scholar 

  • King, A.S., and D.C. Payne. (1964). Normal breathing and the effects of posture in Gallus domesticus. J. Physiol. (London), 174, 340.

    CAS  Google Scholar 

  • King, A.S., and V. Molony. (1971). The anatomy of respiration. In “Physiology and Biochemistry of the Domestic Fowl,” Vol. 1 (O.J. Bell and B.M. Freeman, Eds.). New York: Academic Press, p. 93.

    Google Scholar 

  • King, A.S., J. McLelland, R.D. Cook, D.Z. King, and C. Walsh. (1974). The ultrastructure of afferent nerve endings in the avian lung. Respir. Physiol., 22, 21.

    PubMed  CAS  Google Scholar 

  • King, A.S., D.Z. King, R.D. Hodges, and J. Henry. (1975). Synaptic morphology of the carotid body of the domestic fowl. Cell Tissue Res., 162, 459.

    PubMed  CAS  Google Scholar 

  • Klentz, R.D., and M.R. Fedde. (1978). Hydrogen sulfide: Effects on avian respiratory control and intrapulmonary CO2 receptors. Respir. Physiol., 32, 355.

    PubMed  CAS  Google Scholar 

  • Kobayashi, S. (1969). On the fine structure of the carotid body of the bird, Uroloncba domestica. Arch. Histol. Jpn., 31, 9.

    PubMed  CAS  Google Scholar 

  • Kobayashi, S. (1971a). Comparative cytological studies of the carotid body. 1. Demonstration of monoamine-storing cells by correlated chromaffin reaction and fluorescence histochemistry. Arch. Histol. Jpn., 33, 319.

    PubMed  CAS  Google Scholar 

  • Kobayashi, S. (1971b). Comparative cytological studies of the carotid body. 2. Ultrastructure of the synapses on the chief cell. Arch. Histol. Jpn., 33, 397.

    PubMed  CAS  Google Scholar 

  • Kollias, G.V.,Jr., and I. McLeish. (1978). Effects of ketamine hydrochloride in red-tailed hawks (Buteo jamaicensis) I. — Arterial blood gas and acid base. Comp. Biochem. Physiol. 60C, 57.

    Google Scholar 

  • Kuhlmann, W.D., and M.R. Fedde, (1976). Upper respiratory dead space in the chicken: Its fraction of the tidal volume. Comp. Biochem. Physiol. 54A, 409.

    CAS  Google Scholar 

  • Kunz, A.L., and D.A. Miller. (1974a). Pacing of avian respiration with CO2 oscillation. Respir. Physiol., 22, 167.

    PubMed  CAS  Google Scholar 

  • Kunz, A.L., and D.A. Miller. (1974b). Effects of feedback delay upon the apparent damping ratio of the avian respiratory control system. Respir. Physiol., 22, 179.

    PubMed  CAS  Google Scholar 

  • Kunz, A.L., and R.D. Tallman, Jr. (1978). Effect of FICO2 dynamics on Ti and Ttot in spontaneously breathing birds. In “Respiratory Function in Birds, Adult and Embryonic” (J. Piiper, Ed.). Berlin: Springer-Verlag, p. 182.

    Google Scholar 

  • Kunz, A.L., R.D. Tallman, Jr., E.K. Michal, and R.K. Moore. (1979). Effect of carotid body denervation on pacing in unidirectionally ventilated chickens. Physiologist, 22, 73.

    Google Scholar 

  • Kunz, A.L., R.P. Kaminski, D.A. Rittinger, T.L. Clanton, and G.O. Ballam. (1984). Unified model explaining normal breathing, volume pacing and CO2 pacing in birds. Fed. Proc. Fed. Am Soc. Exp. Biol., 43, 431.

    Google Scholar 

  • Lacy, R.A., Jr. (1968). Mechanical determinants of panting frequency in the domestic fowl. M.S. Thesis, University of California, Davis.

    Google Scholar 

  • Lapennas, G.N., and R.B. Reeves. (1983). Oxygen affinity of blood of adult domestic chicken and red jungle fowl. Respir. Physiol., 52, 27.

    PubMed  CAS  Google Scholar 

  • Lasiewski, R.C. (1972). Respiratory function in birds. In “Avian Biology,” Vol. II (D.S. Farner and J.R. King, Eds.). New York: Academic Press, p. 287.

    Google Scholar 

  • Lasiewski, R.C., and W.A. Calder, Jr. (1971). A preliminary allometric analysis of respiratory variables in resting birds. Respir. Physiol., 11, 152.

    PubMed  CAS  Google Scholar 

  • Lillo, R.S., and D.R. Jones. (1983). Influence of ischemia and hypoxia on breathing in ducks. J. Appl. Physiol., 55, 400.

    PubMed  CAS  Google Scholar 

  • Locy, W.A., and O. Larsell. (1916a). The embryology of the bird’s lung based on observations of the domestic fowl. Part I. Am. J. Anat., 19, 447.

    Google Scholar 

  • Locy, W.A., and O. Larsell. (1916b). The embryology of the bird’s lung based on observations of the domestic fowl. Part II. Am. J. Anat., 20, 1.

    Google Scholar 

  • Lutz, P.L. (1980). On the oxygen affinity of bird blood. Am. Zool., 20, 187.

    CAS  Google Scholar 

  • Lutz, P.L., I.S. Longmuir, and K. Schmidt-Nielsen. (1974). Oxygen affinity of bird blood. Respir. Physiol., 20, 325.

    PubMed  CAS  Google Scholar 

  • Macklem, P.T., P. Bouverot, and P. Scheid. (1979). Measure-ment of the distensibility of the parabronchi in duck lungs. Respir. Physiol., 38, 23.

    PubMed  CAS  Google Scholar 

  • Magno, M. (1973). Cardio-respiratory responses to carotid body stimulation with NaCN in the chicken. Respir. Physiol., 17, 220.

    PubMed  CAS  Google Scholar 

  • Magnussen, H., H. Willmer, and P. Scheid. (1976). Gas exchange in air sacs: Contribution to respiratory gas exchange in ducks. Respir. Physiol., 26, 129.

    PubMed  CAS  Google Scholar 

  • Maina, J.N. (1982). A scanning electron microscopic study of the air and blood capillaries of the lung of the domestic fowl (Gallus domesticus). Experientia, 38, 614.

    PubMed  CAS  Google Scholar 

  • Maina, J.N. (1984). Morphometries of the avian lung. 3. The structural design of the passerine lung. Respir. Physiol., 55, 291.

    PubMed  CAS  Google Scholar 

  • Maina, J.N., and A.S. King. (1982). The thickness of the avian blood-gas barrier: qualitative and quantitative observations. J. Anat., 134, 553.

    PubMed  CAS  Google Scholar 

  • Maina, J.N., M.A. Abdalla, and A.S. King. (1982). Light microscopic morphometry of the lung of 19 avian species. Acta Anat., 112, 264.

    PubMed  CAS  Google Scholar 

  • Marder, J., and Z. Arad. (1975). The acid base balance of abdim’s stork (Sphenorbynchus abdimii) during thermal panting. Comp. Biochem. Physiol. 51A, 887.

    CAS  Google Scholar 

  • Martin, D.W., Jr. (1981). Structure and function of a protein- hemoglobin. In “Harper’s Review of Biochemistry,” 18th ed. (D.W. Martin, Jr., P.A. Mayes, and V.W. Rodwell, Eds.). Los Altos, California: Lange Medical Publications, p. 40.

    Google Scholar 

  • Mather, F.B., G.M. Barnas, and R.E. Burger. (1980). The influence of alkalosis on panting. Comp. Biochem. Physiol. 64A, 265.

    Google Scholar 

  • McLelland, J. (1970). The innervation of the air passages of the avian lung and observations on afferent vagal pathways concerned in the regulation of breathing. Ph.D. Thesis, University of Liverpool, Liverpool.

    Google Scholar 

  • McLelland, J., and V. Molony. (1983). Respiration. In “Physiology and Biochemistry of the Domestic Fowl,” Vol. 4 (B.M. Freeman, Ed.). New York: Academic Press, p. 63.

    Google Scholar 

  • Meyer, M., H. Worth, and P. Scheid. (1976). Gas-blood CO2 equilibrium in parabronchial lungs of birds. J. Appl. Physiol., 41, 3O2.

    PubMed  CAS  Google Scholar 

  • Meyer, M., J.P. Holle, and P. Scheid. (1978). Bohr effect induced by CO2 and fixed acid at various levels of O2 saturation in duck blood. Pfleugers Arch., 376, 237.

    CAS  Google Scholar 

  • Michal, E.K., G.O. Ballam, and A.L. Kunz. (1981). Effects of CO2 and air sac volume on the activity of medullary respiratory neurons of the chicken. Physiologist, 24, 131.

    Google Scholar 

  • Miller, D.A. (1978). Effect of stretch on the respiratory pattern of a chicken. In “Respiratory Function in Birds, Adult and Embryonic” (J. Piiper, Ed.). Berlin: Springer-Verlag, p. 188.

    Google Scholar 

  • Miller, D.A. (1980). A CO2 threshold mechanism in a closed- loop avian respiratory system. J. Appl. Physiol., 48, 1O29.

    PubMed  CAS  Google Scholar 

  • Miller, D.A., and A.L. Kunz. (1977). Evidence that a cyclic rise in avian pulmonary CO2 triggers the next inspiration. Respir. Physiol., 31, 193.

    PubMed  CAS  Google Scholar 

  • Milsom, W.K., D.R.Jones, and G.R.J. Gabbott. (1981). On chemoreceptor control of ventilatory responses to CO2 in unanesthetized ducks. J. Appl. Physiol., 50, 1121.

    CAS  Google Scholar 

  • Mitchell, G.S., and J.L. Osborne. (1978). Avian intrapulmonary chemoreceptors: Respiratory response to a step decrease in PCO2. Respir. Physiol., 33, 251.

    PubMed  CAS  Google Scholar 

  • Mitchell, G.S., and J.L. Osborne. (1979). Ventilatory responses to carbon dioxide inhalation after vagotomy in chickens. Respir. Physiol., 36, 81.

    Google Scholar 

  • Mitchell, G.S., and J.L. Osborne. (1980). A comparison between carbon dioxide inhalation and increased dead space ventilation in chickens. Respir. Physiol., 40, 227.

    PubMed  CAS  Google Scholar 

  • Molony, V. (1974). Classification of vagal afferents firing in phase with breathing in Gallus domesticus. Respir. Physiol., 22, 57.

    PubMed  CAS  Google Scholar 

  • Molony, V. (1978). Airway resistance. In “Respiratory Function in Birds, Adult and Embryonic” (J. Piiper, Ed.). Berlin: Springer-Verlag, p. 142.

    Google Scholar 

  • Molony, V., W. Graf, and P. Scheid. (1976). Effects of CO2 on pulmonary air flow resistance in the duck. Respir. Physiol., 26, 333.

    PubMed  CAS  Google Scholar 

  • Murrish, D.E. (1982). Acid-base balance in three species of antarctic penguins exposed to thermal stress. Physiol. Zool., 55, 137.

    Google Scholar 

  • Niemeier, M.M. (1979). Structural and functional aspects of vocal ontogeny in Grus canadensis (Gruidae: Aves). Doctoral Dissertation, University of Nebraska, Lincoln.

    Google Scholar 

  • Nightingale, T.E., R.A. Boster, and M.R. Fedde. (1968). Use of the oxygen electrode in recording PO2 in avian blood. J. Appl. Physiol., 25, 371.

    CAS  Google Scholar 

  • Nye, P.C.G., and R.E. Burger. (1978). Chicken intrapulmonary chemoreceptors: Discharge at static levels of intrapulmonary carbon dioxide and their location. Respir. Physiol., 33, 299.

    PubMed  CAS  Google Scholar 

  • Nye, P.C.G., and F.L. Powell. (1984). Steady-state discharge and bursting of arterial chemoreceptors in the duck. Respir. Physiol., 56, 369.

    PubMed  CAS  Google Scholar 

  • Oberthür, W., G. Braunitzer, R. Baumann, and P.G. Wright. (1983). Die Primärstruktur der α- und β-Ketten der Hauptkomponenten der Hämoglobine des Strausses (Struthio ca- melus) und des Nandus (Rhea americana) (Struthioformes). Hoppe-Seyler’s Z. Physiol. Chem., 364, 119.

    PubMed  Google Scholar 

  • Osborne, J.L., and G.S. Mitchell. (1978). Intrapulmonary and systemic CO2-chemoreceptor interaction in the control of avian respiration. Respir. Physiol., 33, 349.

    PubMed  CAS  Google Scholar 

  • Osborne, J.L., R.E. Burger, and P.J. Stoll. (1977a). Dynamic responses of CO2-sensitive avian intrapulmonary chemoreceptors. Am. J. Physiol., 233, R15.

    PubMed  CAS  Google Scholar 

  • Osborne, J.L., G.S. Mitchell, and F. Powell. (1977b). Ventila-tory responses to CO2 in the chicken: Intrapulmonary and systemic chemoreceptors. Respir. Physiol., 30, 369.

    PubMed  CAS  Google Scholar 

  • Pattle, R.E. (1978). Lung surfactant and lung lining in birds. In “Respiratory Function in Birds, Adult and Embryonic” (J. Piiper, Ed.). New York: Springer-Verlag, p. 23.

    Google Scholar 

  • Peek, F.W., and R.E. Phillips. (1971). Repetitive vocalizations evoked by local electrical stimulation of avian brains. II. Anesthetized chickens (Gallus gallus). Brain Behav. Evol., 4, 417.

    PubMed  CAS  Google Scholar 

  • Peek, F.W., O.M. Youngren, and R.E. Phillips. (1975). Repetitive vocalizations evoked by electrical stimulation of avian brains. IV. Evoked and spontaneous activity in expiratory and inspiratory nerves and muscles of the chicken (Gallus gallus). Brain Behav. Evol., 12, 1.

    PubMed  CAS  Google Scholar 

  • Perry, S.F., and H.-R. Duncker. (1980). Interrelationship of static mechanical factors and anatomical structure in lung evolution. J. Comp. Physiol., 138, 321.

    Google Scholar 

  • Perutz, M.F. (1978). Hemoglobin structure and respiratory transport. Sci. Am., 239 (6), 92.

    PubMed  CAS  Google Scholar 

  • Peterson, D.F., and M.R. Fedde. (1968). Receptors sensitive to carbon dioxide in lungs of chicken. Science, 162, 1499.

    PubMed  CAS  Google Scholar 

  • Petschow, D., I. Wiirdinger, R. Baumann, J. Duhm, G. Braunitzer, and C. Bauer. (1977). Causes of high blood O2 affinity of animals living at high altitude. J. Appl. Physiol., 42, 139.

    PubMed  CAS  Google Scholar 

  • Pettit, T.N., and G.C. Whittow. (1982). The initiation of pulmonary respiration in a bird embryo: Tidal volume and frequency. Respir. Physiol., 48, 209.

    PubMed  CAS  Google Scholar 

  • Piiper, J. (1978). Origin of carbon dioxide in caudal air sacs of birds. In “Respiratory Function in Birds, Adult and Embryonic” (J. Piiper, Ed.). New York: Springer-Verlag, p. 148.

    Google Scholar 

  • Piiper, J., and P. Scheid. (1972). Maximum gas transfer efficacy of models for fish gills, avian lungs and mammalian lungs. Respir. Physiol., 14, 115.

    PubMed  CAS  Google Scholar 

  • Piiper, J., and P. Scheid. (1975). Gas transport efficacy of gills, lungs and skin: Theory and experimental data. Respir. Physiol., 23, 209.

    PubMed  CAS  Google Scholar 

  • Piiper, J., and P. Scheid. (1982). Models for a comparative functional analysis of gas exchange organs in vertebrates. J. Appl. Physiol., 53, 1321.

    PubMed  CAS  Google Scholar 

  • Piiper, J., F. Drees, and P. Scheid. (1970). Gas exchange in the domestic fowl during spontaneous breathing and artificial ventilation. Respir. Physiol., 9, 234.

    PubMed  CAS  Google Scholar 

  • Powell, F.L. (1982). Diffusion in avian lungs. Fed. Proc. Fed. Am. Soc. Exp. Biol., 41, 2131.

    CAS  Google Scholar 

  • Powell, F.L. (1983a). Respiration. In “Physiology and Behavior of the Pigeon” (M. Abs., Ed.). New York: Academic Press, p. 73.

    Google Scholar 

  • Powell, F.L. (1983b). Effects of acid-base balance on avian intrapulmonary chemoreceptors. In “Modeling and Control of Breathing” (B.J. Whipp and D.M. Wiberg, Eds.). Amsterdam: Elsevier Science Publishing Co., p. 70.

    Google Scholar 

  • Powell, F.L., and R.W. Mazzone. (1983). Morphometries of rapidly frozen goose lungs. Respir. Physiol., 51, 319.

    PubMed  CAS  Google Scholar 

  • Powell, F.L., R.K. Gratz, and P. Scheid. (1978). Response of intrapulmonary chemoreceptors in the duck to changes in PCO2 and pH. Respir. Physiol., 35, 65.

    PubMed  CAS  Google Scholar 

  • Powell, F.L., M.R. Fedde, R.K. Gratz, and P. Scheid. (1978). Ventilatory response to CO2 in birds. I. Measurements in the unanesthetized duck. Respir. Physiol., 35, 349.

    PubMed  CAS  Google Scholar 

  • Powell, F.L., M.R. Barker, and R.E. Burger. (1980). Ventilatory response to the Pco profile in chicken lungs. Respir. Physiol., 41, 307. 2

    Google Scholar 

  • Powell, F.L., J. Geiser, R.K. Gratz, and P. Scheid. (1981). Airflow in the avian respiratory tract: Variations of O2 and CO2 concentrations in the bronchi of the duck. Respir. Physiol., 44, 195.

    PubMed  CAS  Google Scholar 

  • Prange, H.D., J.S. Wasser, A.S. Gaunt, and S.L.L. Gaunt. (1984). Respiratory and thermoregulatory effects of tracheal coiling in cranes (Gruidae): The functions of a long trachea. Fed. Proc. Fed. Am. Soc. Exp. Biol., 43, 638.

    Google Scholar 

  • Richards, S.A. (1968). Vagal control of thermal panting in mammals and birds. J. Physiol., (London), 199, 89.

    CAS  Google Scholar 

  • Richards, S.A. (1969). Vagal function during respiration and the effects of vagotomy in the domestic fowl (Gallus domesticus). Comp. Biochem. Physiol., 29, 955.

    PubMed  CAS  Google Scholar 

  • Roberts, T.S. (1880). The convolution of the trachea in the sandhill and whooping cranes. Am. Nat. 14, 108.

    Google Scholar 

  • Rollema, H.S., and C. Bauer. (1979). The interaction of inositol pentaphosphate with the hemoglobins of highland and lowland geese. J. Biol. Chem., 254, 12038.

    PubMed  CAS  Google Scholar 

  • Scheid, P. (1978). Analysis of gas exchange between air capillaries and blood capillaries in avian lungs. Respir. Physiol., 32, 27.

    PubMed  CAS  Google Scholar 

  • Scheid, P. (1979a). Mechanisms of gas exchange in bird lungs. Rev. Physiol. Biochem. Pharmacol., 86, 137.

    PubMed  CAS  Google Scholar 

  • Scheid, P. (1979b). Respiration and control of breathing in birds. Physiologist, 22, 60.

    PubMed  CAS  Google Scholar 

  • Scheid, P. (1981). Significance of unidirectional ventilation for avian pulmonary gas exchange. Physiologist, 24, 131.

    Google Scholar 

  • Scheid, P. (1982). Respiration and control of breathing. In “Avian Biology,” Vol. 6 (D.S. Farner, J.R. King, and K.C. Parkes, Eds.). New York: Academic Press, p. 405.

    Google Scholar 

  • Scheid, P., and J. Piiper. (1969). Volume, ventilation and compliance of the respiratory system in the domestic fowl. Respir. Physiol., 6, 298.

    PubMed  CAS  Google Scholar 

  • Scheid, P., and J. Piiper. (1970). Analysis of gas exchange in the avian lung: Theory and experiments in the domestic fowl. Respir. Physiol., 9, 246.

    PubMed  CAS  Google Scholar 

  • Scheid, P., and T. Kawashiro. (1975). Metabolic changes in avian blood and their effects on determination of blood gases and pH. Respir. Physiol., 23, 291.

    PubMed  CAS  Google Scholar 

  • Scheid, P., and H. Slama. (1975). Remote-controlled device for sampling arterial blood in unrestrained animals. Pfleugers Arch., 356, 373.

    CAS  Google Scholar 

  • Scheid, P., H. Slama, R.N. Gatz, and M.R. Fedde. (1974a). Intrapulmonary CO2 receptors in the duck: III. Functional localization. Respir. Physiol., 22, 123.

    PubMed  CAS  Google Scholar 

  • Scheid, P., H. Slama, and H. Willmer. (1974b). Volume and ventilation of air sacs in ducks studied by inert gas wash-out. Respir. Physiol., 21, 19.

    PubMed  CAS  Google Scholar 

  • Scheid, P., R.E. Burger, M. Meyer, and W. Graf. (1978a). Diffusion in avian pulmonary gas exchange: Role of the diffusion resistance of the blood-gas barrier and the air capillaries. In “Respiratory Function in Birds, Adult and Embryonic” (J. Piiper, Ed.). New York: Springer-Verlag, p. 136.

    Google Scholar 

  • Scheid, P., R.K. Gratz, F.L. Powell, and M.R. Fedde. (1978b). Ventilatory response to CO2 in birds. II. Contribution by intrapulmonary CO2 receptors. Respir. Physiol., 35, 361.

    PubMed  CAS  Google Scholar 

  • Scheipers, G., T. Kawashiro, and P. Scheid. (1975). Oxygen and carbon dioxide dissociation of duck blood. Respir. Physiol., 24, 1.

    PubMed  CAS  Google Scholar 

  • Schenk, A.G., C. Paul, and C. Vandecasserie. (1978). Respira-tory proteins in birds. In “Chemical Zoology, Vol. 10, Aves” (A.H. Brush, Ed.). New York: Academic Press, p. 359.

    Google Scholar 

  • Schmidt-Nielsen, K., J. Kanwisher, R.C. Lasiewski, J.E. Cohn, and W.L. Bretz. (1969). Temperature regulation and respiration in the ostrich. Condor, 71, 341.

    Google Scholar 

  • Sèbert, P. (1978). Do birds possess a central CO2-H+ ventilatory stimulus? IRCS Med. Sci., 6, 444.

    Google Scholar 

  • Sèbert, P. (1979). Mise en évidence de l’action centrale du stimulus CO2-[H+] de la ventilation chez le Canard Pékin. J. Physiol. (Paris), 75, 901.

    Google Scholar 

  • Taha, A.A.M., and A.S. King. (1983). Autoradiographic ob-servations on the innervation of the carotid body of the domestic fowl. Brain Res., 266, 193.

    PubMed  CAS  Google Scholar 

  • Tallman, R.D., Jr., and A.L. Kunz. (1982). Changes in breath-ing pattern mediated by intrapulmonary CO2 receptors in chickens. J. Appl. Physiol., 52, 162.

    PubMed  Google Scholar 

  • Tallman, R.D., Jr., and F.S. Grodins. (1982a). Intrapulmonary CO2 receptor discharge at different levels of venous PCO2. J. Appl. Physiol., 53, 1386.

    PubMed  Google Scholar 

  • Tallman, R.D., Jr., and F.S. Grodins. (1982b). Intrapulmonary CO2 receptors and ventilatory response to lung CO2 loading. J. Appl. Physiol., 52, 1272.

    PubMed  Google Scholar 

  • Taylor, C.R., and E.R. Weibel. (1981). Design of the mamma-lian respiratory system. I. Problem and strategy. Respir. Physiol., 44, 1.

    PubMed  CAS  Google Scholar 

  • Torre-Bueno, J.R., J. Geiser, and P. Scheid. (1980). Incomplete gas mixing in air sacs of the ducks. Respir. Physiol., 42, 109.

    PubMed  CAS  Google Scholar 

  • Tschorn, R.R., and M.R. Fedde. (1971). Motor unit recruitment pattern in a respiratory muscle of unanesthetized chickens. Poult. Sci., 50, 266.

    PubMed  CAS  Google Scholar 

  • Tschorn, R.R., and M.R. Fedde. (1974). Effects of carbon monoxide on avian intrapulmonary carbon dioxide- sensitive receptors. Respir. Physiol., 20, 313.

    PubMed  CAS  Google Scholar 

  • van Nice, P., C.P. Black, and S.M. Tenney. (1980). A compar-ative study of ventilatory responses to hypoxia with reference to hemoglobin O2-affinity in llama, cat, rat, duck, and goose. Comp. Biochem. Physiol. 66A, 347.

    Google Scholar 

  • Vos, H.J. (1934). Über den Weg der Atemluft in der Entenlunge. Z. Wiss. Biol. Vgl. Physiol., 21, 552.

    Google Scholar 

  • Walsh, C., and J. McLelland. (1974a). Intraepithelial axons in the avian trachea. Z. Zellforsch. Mikrosk. Anat., 147, 209.

    PubMed  CAS  Google Scholar 

  • Walsh, C., and J. McLelland. (1974b). Granular ‘endocrine’ cells in avian respiratory epithelia. Cell Tissue Res., 153, 269.

    PubMed  CAS  Google Scholar 

  • Weingarten, J.P., H.S. Rollema, C. Bauer, and P. Scheid. (1978). Effects of inositol hexaphosphate on the Bohr effect induced by CO2 and fixed acids in chicken hemoglobin. Pfleugers Arch., 377, 135.

    CAS  Google Scholar 

  • Wells, R.M.G. (1976). The oxygen affinity of chicken hemoglobin in whole blood and erythrocyte suspensions. Respir. Physiol., 27, 21.

    CAS  Google Scholar 

  • West, N.H., O.S. Bamford, and D.R.Jones. (1977). A scanning electron microscope study of the microvasculature of the avian lung. Cell Tissue Res., 176, 553.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, K., D. Nguyen-Phu, P. Scheid, and J. Piiper. (1985). Kinetics of O2 uptake and release by human erythrocytes studied by a stopped-flow technique. J. Appl. Physiol., 58, 1215.

    PubMed  CAS  Google Scholar 

  • Zimmer, K. (1935). Beiträge zur Mechanik der Atmung bei den Vögeln in Stand und Flug. Zoologica, 33 (5 Heft 88), 1.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Fedde, M.R. (1986). Respiration. In: Sturkie, P.D. (eds) Avian Physiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4862-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4862-0_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9335-4

  • Online ISBN: 978-1-4612-4862-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics