• A. L. Harvey
  • I. G. Marshall


Avian skeletal muscle is similar to mammalian skeletal muscle in that it contains the same types of contractile proteins arranged in the familiar striated pattern (Figure 3–1). As it is impossible to give a detailed account of all the properties of avian muscle, we have concentrated on reviewing the development and properties of the functionally important different fiber types, some aspects of the electrical properties of avian muscle membranes, innervation, and neuromuscular transmission. Because many of the basic properties of avian muscle structure and function have been reviewed comprehensively (Berger, 1960; George and Berger, 1966; Bowman and Marshall, 1972; van den Berge, 1975), we have concentrated on more recent work.


Acetylcholine Receptor Neuromuscular Junction Latissimus Dorsi Latissimus Dorsi Muscle Chicken Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi, E. (1983). Fluctuation in the development of various skeletal muscles in the chick embryo, with special reference to AChE activity and the formation of neuromuscular junctions. Dev. Biol., 95, 46.PubMedCrossRefGoogle Scholar
  2. Allen, R.E., M.H. Stromer, D.E. Goll, and R.M. Robson. (1979). Accumulation of myosin, actin, tropomyosin, and α-actinin in cultured muscle cells. Dev. Biol., 69, 655.PubMedCrossRefGoogle Scholar
  3. Anderson, A.J., A.L. Harvey and P.M. Mbugua (1985). Effects of fasciculin 2, an anticholinesterase polypeptide from green mamba venom, on neuromuscular transmission in mouse diaphragm preparations. Neurosci. Lett., 54, 123.PubMedCrossRefGoogle Scholar
  4. Askanas, V., S.A. Shafiq, and A.T. Milhorat. (1972). Histochemistry of cultured aneural chick muscle. Morphological maturation of fibre types. Exp. Neurol., 37, 218.PubMedCrossRefGoogle Scholar
  5. Atsumi, S. (1971). The histogenesis of motor neurones with special reference to the correlation of their endplate formation. I. The development of endplates in the intercostal muscle in the chick embryo. Acta Anat., 81, 161.CrossRefGoogle Scholar
  6. Atsumi, S. (1977). Development of neuromuscular junctions of fast and slow muscles in chick embryo—light and electron microscopic study. J. Neurocytol., 6, 691.PubMedCrossRefGoogle Scholar
  7. Atsumi, S. (1981). Localisation of surface and internal acetylcholine receptors in developing fast and slow muscles of the chick embryo. Dev. Biol., 86, 122.PubMedCrossRefGoogle Scholar
  8. Barnard, E.A.,J.M. Lyles, andJ.A. Pizzey. (1982). Fibre types in chicken skeletal muscles and their changes in muscular dystrophy. J. Physiol., 331, 333.Google Scholar
  9. Barrett, J.C., and A.L. Harvey. (1979). Effects of venom of the green mamba, Dendroaspis angusticeps, on skeletal muscle and neuromuscular transmission. Br. J. Pharmacol., 67, 199.PubMedGoogle Scholar
  10. Bennett, M.R., and A.G. Pettigrew. (1974). The formation of synapses in striated muscle during development. J. Physiol., 241, 515.PubMedGoogle Scholar
  11. Berger, A.J. (1960). The Musculature. In “Biology and Comparative Physiology of Birds,” Vol. 1 ( A.J. Marshall, Ed). London and New York: Academic Press, p. 301.Google Scholar
  12. Betz, H.,J.-P. Bourgeois, and J.-P. Changeux. (1980). Evolution of cholinergic proteins in developing slow and fast skeletal muscles in chick embryo. J. Physiol., 302, 197.Google Scholar
  13. Bonner, P.H. and S.D. Hauschka. (1974). Clonal analysis of vertebrate myogenesis. I. Early developmental events in the chick limb. Dev. Biol., 37, 317.PubMedCrossRefGoogle Scholar
  14. Bourgeois, J.-P., and M. Toutant. (1982). Innervation of avian latissimus dorsi muscles and axonal outgrowth pattern in the posterior latissimus dorsi motor nerve during embryonic development. J. Comp. Neurol., 208, 1PubMedCrossRefGoogle Scholar
  15. Bowman, W.C. (1964). Neuromuscular blocking agents. In “Evaluation of Drug Activities: Pharmacometrics” ( D.R. Laurence and A.L. Bacharach, Eds.). London and New York: Academic Press, p. 325.Google Scholar
  16. Bowman, W.C. (1980). “Pharmacology of Neuromuscular Function.” Bristol: John Wright & Sons, Ltd.Google Scholar
  17. Bowman, W.C., and I.G. Marshall. (1972). Muscle. In “Physiology and Biochemistry of the Domestic Fowl,” Vol. 2 ( D.J. Bell and B.M. Freeman, Eds.). London: Academic Press, p. 707.Google Scholar
  18. Bowman, W.C., A.L. Harvey, and I.G. Marshall. (1977). The actions of aminopyridines on avian muscle. Naunyn-Schmiedeberg’s Arch. Pharmacol., 297, 99.CrossRefGoogle Scholar
  19. Brown, G.L. (1938). The preparation of the tibialis anterior (cat) for close-arterial injections. J. Physiol., 92, 22.Google Scholar
  20. Brown, G.L., and A.M. Harvey. (1938). Neuromuscular conduction in the fowl. J. Physiol., 93, 285.PubMedGoogle Scholar
  21. Burden, S. (1977a). Development of the neuromuscular junction in the chick embryo: the number, distribution and stability of acetylcholine receptors. Dev. Biol., 57, 317.PubMedCrossRefGoogle Scholar
  22. Burden, S. (1977b). Acetylcholine receptors at the neuromuscular junction: developmental change in receptor turnover. Dev. Biol., 61, 79.PubMedCrossRefGoogle Scholar
  23. Burleigh, I.G. (1974). On the cellular regulation of growth and development in skeletal muscle. Biol. Rev. Cambridge Philos. Soc., 49, 267.PubMedCrossRefGoogle Scholar
  24. Burrage, T. G., and T. L. Lentz. (1981). Ultrastructural characterization of surface specializations containing high-density acetylcholine receptors on embryonic chick myotubes in vivo and in vitro. Dev. Biol., 85, 267.PubMedCrossRefGoogle Scholar
  25. Buttle, G.A.H., and E.J. Zaimis. (1949). The action of decamethonium iodide in birds. J. Pharm. Pharmacol., 1, 991.CrossRefGoogle Scholar
  26. Chang, C.C., M.J. Su, and M.-C. Lee. (1975). A quantification of acetylcholine receptors of the chick biventer cervicis muscle. J. Pharm. Pharmacol., 27, 454.PubMedCrossRefGoogle Scholar
  27. Child, K.J., and E. Zaimis. (1960). A new biological method for the assay of depolarizing substances using the isolated semispinalis cervicis muscle of the chick. Br. J. Pharmacol., 15, 412.Google Scholar
  28. Cullen, M.J., J.B. Harris, M.W. Marshall, and M.R. Ward. (1975). An electrophysiological and morphological study of normal and denervated chicken latissimus dorsi muscles. J. Physiol., 245, 371.PubMedGoogle Scholar
  29. Dale, H.H., W. Feldberg, and M. Vogt. (1936). Release of acetylcholine at voluntary motor nerve endings. J. Physiol., 86, 353.PubMedGoogle Scholar
  30. Devlin, R.B., and C.P. Emerson. (1978). Coordinate regulation of contractile protein synthesis during myoblast differentiation. Cell, 13, 599.PubMedCrossRefGoogle Scholar
  31. Devlin, R.B., and C.P. Emerson. (1979). Coordinate accumulation of contractile protein mRNAs during myoblast differentiation. Dev. Biol., 69, 202.PubMedCrossRefGoogle Scholar
  32. Dionne, V.E., and R.L. Parsons. (1981). Characteristics of the acetycholine-operated channel at twitch and slow fibre neuromuscular junctions of the garter snake. J. Physiol., 310, 145.PubMedGoogle Scholar
  33. Dryden, W.F., A.L. Harvey, and I.G. Marshall. (1974). Pharmacological studies on the bungarotoxins: Separation of the fractions and their neuromuscular activity. Eur. J. Pharmacol., 26, 256.PubMedCrossRefGoogle Scholar
  34. Durant, N.N., I.G. Marshall, D.S. Savage, T. Sleigh, and I.C. Carlyle. (1979). The neuromuscular and autonomic blocking actions of pancuronium, Org NC45, and other pancuronium analogues in the cat. J. Pharm. Pharmacol., 31, 831.PubMedCrossRefGoogle Scholar
  35. Entrikin, R.K., and S.H. Bryant. (1975). Electrophysiological properties of biventer cervicis muscle fibers of normal and Roller pigeons. J. Neurobiol., 6, 201.PubMedCrossRefGoogle Scholar
  36. Ezerman, E.B., and H. Ishikawa. (1967). Differentiation of the sarcoplasmic reticulum and T system in developing chick skeletal muscle in vitro. J. Cell Biol., 35, 405.PubMedCrossRefGoogle Scholar
  37. Fambrough, D.M. (1979). Control of acetylcholine receptors in skeletal muscle. Physiol. Rev., 59, 165.PubMedGoogle Scholar
  38. Fedde, M.R. (1969). Electrical properties and acetylcholine sensitivity of singly and multiply innervated avian muscle fibers. J. Gen. Physiol., 53, 624.PubMedCrossRefGoogle Scholar
  39. Gandiha, A., I.G. Marshall, D. Paul, I.W. Rodger, W. Scott, and H. Singh. (1975). Some actions of chandonium iodide, a new short-acting muscle relaxant. Clin. Exp. Pharmacol. Physiol., 2, 159.PubMedCrossRefGoogle Scholar
  40. Gasser, H.S., and H. Dale, (1926). The pharmacology of denervated muscle. II. Some phenomena of antagonism and the formation of lactic acid in chemical contracture. J. Pharmacol. Exp. Ther., 28, 290.Google Scholar
  41. George, J.C., and A.J. Berger, (1966). “Avian Myology.” London and New York: Academic Press.Google Scholar
  42. Ginsborg, B.L. (1960a). Spontaneous activity in muscle fibres of the chick. J. Physiol., 150, 707.PubMedGoogle Scholar
  43. Ginsborg, B.L. (1960b). Some properties of avian skeletal muscle fibres with multiple neuromuscular junctions. J. Physiol., 154, 581.PubMedGoogle Scholar
  44. Ginsborg, B.L., and B. Mackay. (1960). The latissimus dorsi muscles of the chick. J. Physiol., 153, 19.Google Scholar
  45. Ginsborg, B.L., and B. Mackay. (1961). A histochemical demonstration of two types of motor innervation in avian skeletal muscle. Bibl. Anat., 2, 174.Google Scholar
  46. Ginsborg, B.L., and J. Warriner. (1960). The isolated chick biventer cervicis nerve-muscle preparation. Br. J. Pharmacol., 15, 410.Google Scholar
  47. Goldspink, G. (1974). Development of muscle. In “Differentiation and Growth of Cells in Vertebrate Tissues,” ( G. Goldspink, Ed.). London: Chapman and Hall, p. 69.Google Scholar
  48. Gordon, T., and G. Vrbova. (1975). The influence of innervation on the differentiation of contractile speeds of developing chick muscles. Pfleugers Arch., 360, 199.CrossRefGoogle Scholar
  49. Gordon, T., R. Perry, Srihari, T. and G. Vrobva. (1977a). Differentiation of slow and fast muscles in chickens. Cell Tissue Res., 180, 211.PubMedCrossRefGoogle Scholar
  50. Gordon, T., R.D. Purves, and G. Vrbova. (1977b). Differentiation of electrical and contractile properties of slow and fast muscle fibers. J. Physiol., 269, 535.PubMedGoogle Scholar
  51. Green, A.L., J.A.M. Lord, and I.G. Marshall. (1978). The relationship between cholinesterase inhibition in the chick biventer cervicis muscle and its sensitivity to exogenous acetylcholine. J. Pharm. Pharmacol., 30, 426.PubMedCrossRefGoogle Scholar
  52. Hall, Z.W., P.D. Gorin, L. Silberstein and C. Bennett. (1985). A postnatal change in the immunological properties of the acetylcholine receptor at rat missile endplates. J. Neurosci., 5, 730.PubMedGoogle Scholar
  53. Harvey, A.L., and E. Karlsson. (1980). Dendrotoxin from the venom of the green mamba, Dendroaspis angusticeps. A neurotoxin that enhances acetylcholine release at neuromuscular junctions. Naunyn-Schmiedeberg’s Arch. Pharmacol., 312, 1.CrossRefGoogle Scholar
  54. Harvey, A.L., and E. Karlsson. (1982). Protease inhibitor homologues from mamba venoms: Facilitation of acetylcholine release and interactions with prejunctional blocking toxins. Br. J. Pharmacol., 77, 153.PubMedGoogle Scholar
  55. Harvey, A.L., and I.G. Marshall. (1977a). The actions of three diaminopyridines on the chick biventer cervicis muscle. Eur. J. Pharmacol., 44, 303.PubMedCrossRefGoogle Scholar
  56. Harvey, A.L., and I.G. Marshall. (1977b). The facilitatory actions of aminopyridines and tetraethylammonium on neuromuscular transmission and muscle contractility in avian muscle. Naunyn-Schmiedeberg’s Arch. Pharmacol., 299, 53.CrossRefGoogle Scholar
  57. Harvey, A.L., and I.G. Marshall. (1977c). A comparison of the effects of amino-pyridines on isolated chicken and rat skeletal muscle preparations. Comp. Biochem. Physiol., C: Comp. Pharmacol., 58, 161.CrossRefGoogle Scholar
  58. Harvey, A.L., and N. Tamiya. (1980). Role of phospholipase activity in the neuromuscular paralysis produced by some components isolated from the venom of the sea snake, Laticauda semifasciata. Toxicon, 18, 65.PubMedCrossRefGoogle Scholar
  59. Harvey, A.L., and van Helden, D. (1981). Acetylcholine receptors in singly and multiply innervated skeletal muscle fibres of the chicken during development. J. Physiol., 317, 397.PubMedGoogle Scholar
  60. Harvey, A.L., I.W. Rodger, and N. Tamiya. (1978). Neuromuscular blocking activity of two fractions isolated from the venom of the sea snake, Laticauda semifasciata. Toxicon, 16, 45.PubMedCrossRefGoogle Scholar
  61. Harvey, A.L., R.J. Marshall, and E. Karlsson. (1982). Effects of purified cardiotoxins from the Thailand cobra (Naja naja siamensis) on isolated skeletal and cardiac muscle preparations. Toxicon, 20, 379.PubMedCrossRefGoogle Scholar
  62. Harvey, A.L., S.V.P. Jones, and I.G. Marshall. (1984). Disopyramide produces non-competitive, voltage-dependent block at the neuromuscular junction. Br. J. Pharmacol., 81, 169 P.Google Scholar
  63. Hess, A. (1961). Structural differences of fast and slow extra-fusal muscle fibres and their nerve endings in chickens. J. Physiol., 157, 221.PubMedGoogle Scholar
  64. Hess, A. (1967). The structure of vertebrate slow and twitch muscle fibres. Invest. Opthalmol., 6, 217.Google Scholar
  65. Hnik, P., I. Jirmanova, L. Vyklicky and J. Zelena. (1967). Fast and slow muscles of the chick after nerve cross-union. J. Physiol., 193, 309.PubMedGoogle Scholar
  66. Hirano, H. (1976). Ultrastructural study on the morphogenesis of the neuromuscular junction in the skeletal muscle of the chick. Z. Zellforsch. Mikrosk. Anat., 79, 198.Google Scholar
  67. Jedrzejczyk J., I. Silman, J. Lai and E.A. Barnard. (1984). Molecular forms of acetylcholinesterase in synaptic and extrasynaptic regions of avian tonic muscle. Neurosci. Lett., 46, 283.PubMedCrossRefGoogle Scholar
  68. Jirmanova, I., and L. Vyklicky. (1965). Post-tetanic potentiation in multiply innervated muscle fibres of the chick (in Czech). Cslka Fysiol., 14, 351.Google Scholar
  69. Khan, M.A. (1976) Histochemical sub-types of three fibre types of avian skeletal muscle. Histochemistry, 50, 9.PubMedCrossRefGoogle Scholar
  70. Kikuchi, T., and C.R. Ashmore. (1976). Developmental aspects of the innervation of skeletal muscle fibers in the chick embryo. Cell Tissue Res., 171, 233.PubMedCrossRefGoogle Scholar
  71. Landmesser, L., and D.G. Morris. (1975). The developmental of functional innervation in the hind limb of the chick embryo. J. Physiol., 249, 301.PubMedGoogle Scholar
  72. Langley, J.N. (1905). On the reaction of cells and of nerve endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curari. J. Physiol., 33, 374.PubMedGoogle Scholar
  73. Larson, P.F., M. Jenkinson, and P. Hudgson. (1970). The morphological development of chick embryo skeletal muscle grown in tissue culture as studied by electron microscopy. J. Neurol. Sci., 10, 385.PubMedCrossRefGoogle Scholar
  74. Lebeda, F.J., and E.X. Albuquerque. (1975). Membrane cable properties of normal and dystrophic chicken muscle fibers. Exp. Neurol., 47, 544.PubMedCrossRefGoogle Scholar
  75. Marshall, I.G. (1969). The effects of some hemicholinium-like compounds on the chick biventer cervicis muscle preparation. Eur. J. Pharmacol., 8, 204.PubMedCrossRefGoogle Scholar
  76. Marshall, I.G. (1970a). Studies on the blocking action of 2-(4-phenylpiperidino)-cyclohexanol (AH 5183). Br. J. Pharmacol., 38, 503.PubMedGoogle Scholar
  77. Marshall, I.G. (1970b). A comparison between the blocking actions of 2-(4-phenylipiperidino)-cyclohexanol (AH 5183) and its N-methyl quaternary analogue (AH 5954). Br. J. Pharmacol., 40, 68.PubMedGoogle Scholar
  78. Marshall, I.G., A.L. Harvey, H. Singh, T.R. Bhardwaj, and D. Paul. (1981). The neuromuscular and autonomic blocking effects of azasteroids containing choline or acetylcholine fragments. J. Pharm. Pharmacol., 33, 451.PubMedCrossRefGoogle Scholar
  79. Miledi, R., and O.D. Uchitel. (1981). Properties of postsynaptic channels induced by acetylcholine in different frog muscle fibres. Nature (London), 291, 162.CrossRefGoogle Scholar
  80. Molgo,J., and S. Thesleff. (1982). 4-Aminoquinoline-induced ‘giant’ miniature endplate potentials at mammalian neuro-muscular junctions. Proc. R. Soc. London, Ser. B, 214, 229.Google Scholar
  81. Poznansky, M.J., and J.A. Steele. (1984). Membrane electrical properties of developing fast-twitch and slow-tonic muscle fibres of the chick. J. Physiol., 347, 633.PubMedGoogle Scholar
  82. Sakmann, B., and H.R. Brenner. (1978). Change in synaptic channel gating during neuromuscular development. Nature (London), 276, 401.CrossRefGoogle Scholar
  83. Schuetze, S.M., E.F. Frank, and G.D. Fischbach, (1978). Channel open time and metabolic stability of synaptic and extrasynaptic acetylcholine receptors on cultured chick myotubes. Proc. Nat. Acad. Sci. U.S.A., 75, 520.CrossRefGoogle Scholar
  84. Shear, C.R. (1978). Cross-sectional myofibre and myofibril growth in immobilized developing skeletal muscle. J. Cell. Sci., 29, 297.PubMedGoogle Scholar
  85. Shear, C.R. (1981). Effects of disuse on growing and adult chick skeletal muscle. J. Cell Sci., 48, 35.PubMedGoogle Scholar
  86. Shear, C.R., and Goldspink, G. (1971). Structural and physiological changes associated with the growth of avian fast and slow muscle. J. Morphol., 135, 351.PubMedCrossRefGoogle Scholar
  87. Shimada, Y. (1972a). Scanning electron microscopy of myogenesis in monolayer culture: A preliminary study. Dev. Biol., 29, 227.PubMedCrossRefGoogle Scholar
  88. Shimada, Y. (1972b). Early stages in the reorganization of dissociated embryonic chick skeletal muscle cells. Z. Anat. Entwicklungsgesch., 138, 255.PubMedCrossRefGoogle Scholar
  89. Shimada, Y., D.A. Fischman, and A.A. Moscona. (1967). The fine structure of embryonic chick skeletal muscle cells differentiated in vitro. J. Cell Biol., 35, 445.PubMedCrossRefGoogle Scholar
  90. Singh, Y.N., I.G. Marshall, and A.L. Harvey. (1978). Some effects of the amino-glycoside antibiotic amikacin on neuro-muscular and autonomic transmission. Br. J. Anaesth., 50, 109.PubMedCrossRefGoogle Scholar
  91. Sumikawa, K., E.A. Barnard, and J.O. Dolly. (1982a). Similarity of acetylcholine receptors of denervated, innervated and embryonic chicken muscles. 2. Subunit compositions. Eur. J. Biochem., 126, 473.PubMedCrossRefGoogle Scholar
  92. Sumikawa, K., F. Mehraban, J.O. Dolly, and E.A. Barnard. (1982b). Similarity of acetylcholine receptors of denervated, innervated and embryonic chicken muscles. 1. Molecular species and their purification. Eur. J. Biochem., 126, 465.PubMedCrossRefGoogle Scholar
  93. Toutant, J.P., M.N. Toutant, D. Renaud, and G.H. Le Douarin. (1980). Histochemical differentiation of extrafusai muscle fibres of the anterior latissimus dorsi in the chick. Cell Differ., 9, 305.PubMedCrossRefGoogle Scholar
  94. Van Den Berge, J.C. (1975). Aves myology. In “Sisson and Grossman’s The Anatomy of the Domestic Animals” R. Getty, W.B. Saunders, Philadelphia: p. 1802.Google Scholar
  95. Van Reizen, H. (1968). Classification of neuromuscular blocking agents in a new neuromuscular preparation of the chick in vitro. Eur. J. Pharmacol., 5, 29.CrossRefGoogle Scholar
  96. Vrbovä, G., T. Gordon, and R.Jones. (1978). “Nerve-Muscle Interaction.” London: Chapman and Hall.Google Scholar
  97. Zaimis, E.J. (1953). Motor endplate differences as a determining factor in the mode of action of neuromuscular blocking substances. J. Physiol., 122, 238.PubMedGoogle Scholar
  98. Zaimis, E.J. (1959). Mechanisms of neuromuscular blockade. In “Curare and Curare-like Agents” ( D. Bovet, F. Bovet- Nitti, and G.B. Marini-Bettolo, Eds.). Amsterdam: Elsevier, p. 191.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1986

Authors and Affiliations

  • A. L. Harvey
  • I. G. Marshall

There are no affiliations available

Personalised recommendations