Alimentary Canal: Secretion and Digestion, Special Digestive Functions, and Absorption

  • G. E. Duke


The process of digestion involves all of the mechanical and chemical changes that ingested food must undergo before it can be absorbed in the intestines. Mechanical changes include swallowing, maceration, and grinding of food in the muscular stomach; chemical digestion consists of secretion of enzymes from the mouth, stomach, intestines, and pancreas, of bile from the liver, of hydrochloric acid from the stomach, and of bacterial action.


Vasoactive Intestinal Peptide Pancreatic Juice Gastric Secretion Vagal Stimulation Pancreatic Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D.L., F.W. Hill, and R. Renner. (1958). Studies of metabolizable and productive energy of glucose for the growing chick. J. Nutr. 65, 561.PubMedGoogle Scholar
  2. Andrews, C.J.H. (1975). Bile secretion in anesthetized Adélie penguin (Pygoscelis adeliae). J. Physiol., 246, 468.Google Scholar
  3. Bar, A., and S. Hurwitz. (1969). In vitro calcium transport in laying fowl intestine: Characterization of the system and medium composition. Poult. Sci., 48, 1105.Google Scholar
  4. Bar, A., and S. Hurwitz. (1972). In vitro calcium transport in laying fowl intestine: Effect of bile preparations. Comp. Biochem. Physiol. A, 41, 383.CrossRefGoogle Scholar
  5. Barnes, E.M. (1972). The avian intestinal flora with particular reference to the possible ecological significance of the cecal anerobic bacteria. Am. J. Clin. Nutr., 25, 1475.PubMedGoogle Scholar
  6. Barnes, E.M., and C.S. Impey. (1972). Some properties of the non-sporing anerobes from poultry caeca. J. Appl. Bacteriol., 35, 241.PubMedCrossRefGoogle Scholar
  7. Barnes, E., and C. S. Impey. (1974). The occurrence and properties of uric acid decomposing anaerobic bacteria in the avian cecum. J. Appl. Bacteriol., 37, 393.PubMedCrossRefGoogle Scholar
  8. Beattie,J., and D.H. Shrimpton. (1958). Surgical and chemical techniques for in vivo studies of the metabolism of the intestinal microflora of domestic fowls. Q.J. Exp. Physiol., 43, 399.Google Scholar
  9. Bedbury, H.P., and G.E. Duke. (1983). Cecal microflora of turkeys fed low or high fiber diets: Enumeration, identification and determination of cellulolytic activity. Poult. Sci., 62, 675.PubMedGoogle Scholar
  10. Bhattacharya, S., and K.C. Ghose. (1971). Influence of food on amylase system in birds. Comp. Biochem. Physiol. B: Comp. Biochem., 40, 317.CrossRefGoogle Scholar
  11. Bird, F.H. (1971). Distribution of trypsin and amylase activities in the duodenum of the domestic fowl. Br. Poult. Sci., 12, 373.PubMedCrossRefGoogle Scholar
  12. Blahos, J., and A.D. Care. (1981). The jejunum is the site of maximal rate of intestinal absorption of phosphate in chicks. Physiol. Bohemoslov., 30, 157.PubMedGoogle Scholar
  13. Bolton, W. (1965). Digestion in crop. Br. Poult. Sci., 6, 97.PubMedCrossRefGoogle Scholar
  14. Brown, K.M. (1971). Sucrose activity in the intestine of the chick; Normal development and influence of hydrocortisone, actinomycin D, cycloheximide and puromycin. J. Exp. Biol., 177, 493.Google Scholar
  15. Burhol, P.G. (1973). Gastric secretory relationship between H+ and pepsin in fistula chickens. Scand. J. Gastroenterol., 8, 283.Google Scholar
  16. Burhol, P.G. (1974). Gastric stimulation by intravenous injection of cholecystokinin and secretin in fistula chickens. Scand. J. Gastroenterol., 9, 49.PubMedGoogle Scholar
  17. Burhol, P.G. (1982). Regulation of gastric secretion in the chicken. Scand. J. Gastroenterol., 17, 321.PubMedCrossRefGoogle Scholar
  18. Burhol, P.G., and B.I. Hirschowitz. (1970). Single subcutaneous doses of histamine and pentagastrin in gastric fistula chickens. Am. J. Physiol., 218, 1671.PubMedGoogle Scholar
  19. Burhol, P.G., and B.I. Hirschowitz. (1971a). Gastric stimulation by subcutaneous infusion of urecholine in fistula chickens. A comparison to histamine and pentagastrin. Scand. J. Gastroenterol., 6 (Suppl. 11), 1.Google Scholar
  20. Burhol, P.G., and B.I. Hirschowitz. (1971b). Gastric stimulation by subcutaneous infusion of cholecystokinin-pancreozy- min in fistula chickens. Scand. J. Gastroenterol., 6 (Suppl. 11), 41.Google Scholar
  21. Burhol, P.G., and B.I. Hirschowitz. (1972). Dose responses with subcutaneous infusion of histamine in gastric fistula chickens. Am. J. Physiol., 222, 308.PubMedGoogle Scholar
  22. Cheney, G. (1938). Gastric acidity in chicks with experimental gastric ulcers. Am. J. Dig. Dis., 5, 104.CrossRefGoogle Scholar
  23. Chodnik, K.S. (1948). Cytology of the glands associated with the alimentary tract of domestic fowl (Gallus domesticus). Q.J. Microsc. Sci., 89, 75.PubMedGoogle Scholar
  24. Cikrt, M., and J. Vostal. (1969). Study of manganese resorption in vitro through intestinal wall. Int. Z. Klin, Pharmakol. Ther. Toxik., 2, 280.Google Scholar
  25. Clemens, E.T., C.E. Stevens, and M. Southworth. (1975). Sites of organic acid production and pattern of digesta movement in the gastrointestinal tract of geese. J. Nutr., 105, 1341.PubMedGoogle Scholar
  26. Coates, M.E.,J.E. Ford, and G.F. Harrison. (1968). Intestinal synthesis of vitamins of the B complex in chicks. Br. J. Nutr., 22, 493.PubMedCrossRefGoogle Scholar
  27. Collip, J.B. (1922). The activation of the glandular stomach of the fowl. Am. J. Physiol., 59, 435.Google Scholar
  28. Crocker, A.D., and W.N. Holmes. (1971). Intestinal absorption in ducklings maintained on fresh water and hypertonic saline. Comp. Biochem Physiol. A, 40, 203.PubMedCrossRefGoogle Scholar
  29. Dal Borgo, G.A., J. Salman, M.H. Pubols, and J. McGinnis. (1968). Exocrine function of the chick pancreas as affected by dietary soybean meal and carbohydrate. Proc. Soc. Exp. Biol. Med., 129, 877.Google Scholar
  30. Dockray, G.J. (1972). Pancreatic secretion in the turkey. J. Physiol., 227, 49.Google Scholar
  31. Dockray, G.J. (1975). Comparison of the actions of porcine secretin and extracts of chicken duodenum on pancreatic exocrine secretion in the cat and turkey. J. Physiol., 244, 625.PubMedGoogle Scholar
  32. Duke, G.E., H.E. Dziuk, O.A. Evanson, and J.E. Miller. (1977). Studies of methods for in situ observations of gastric motility in domestic turkeys. Poult. Sci., 56, 1575.PubMedGoogle Scholar
  33. Duke, G.E., G.A. Petrides, and R.K. Ringer. (1968). Chro- mium-51 in food metabolizability and passage rate studies with the Ring-necked pheasant. Poult. Sci., 47, 1356.PubMedGoogle Scholar
  34. Duke, G.E., H.E. Dziuk, and L. Hawkins. (1969). Gastroin-testinal transit-times in normal and Bluecomb diseased tur-keys. Poult. Sci., 48, 835.Google Scholar
  35. Duke, G.E., A.A. Jegers, G. Loff, and O.A. Evanson. (1975). Gastric digestion in some raptors. Comp. Biochem. Physiol., 50, 649.CrossRefGoogle Scholar
  36. Duke, G.E., J.R. Kimmel, K. Durham, H.G. Pollock, R. Bertoy, and D. Rains-Epstein. (1982). Release of avian pan-creatic polypeptide by various intraluminal contents in the stomach, duodenum or ileum of turkeys. Dig. Dis. Sci., 27, 782.PubMedCrossRefGoogle Scholar
  37. Duke, G.E., E. Eckelstein, S. Kirkwood, C.F. Louis, and H.P. Bedbury. (1984). Cellulose digestion by domestic turkeys fed low or high fiber diets. J. Nutr., 114, 95.PubMedGoogle Scholar
  38. Edwards, H.M., Jr., and K.W. Washburn. (1968). 59Fe ab-sorption by chickens. Poult. Sci., 47, 337.Google Scholar
  39. Farner, D.S. (1942). The hydrogen ion concentration in avian digestive tracts. Poult. Sci., 21, 445.Google Scholar
  40. Farner, D.S. (1943). Biliary amylase in the domestic fowl. Biol. Bull. ( Woods Hole, Mass. ), 84, 240.CrossRefGoogle Scholar
  41. Farner, D.S. (I960). Digestion and digestive system. In “Biol-ogy and Comparative Physiology of Birds” (A.J. Marshall, Ed.). New York: Academic Press, Chapter 11.Google Scholar
  42. Featherston, W.R., T.J. Pockat, and J. Wallace. (1968). Radio-active iron absorption and retention by chicks fed different levels of dietary iron. Poult. Sci., 47, 946.PubMedGoogle Scholar
  43. Fenna, L., and D.A. Boag. (1974). Adaptive significance of the ceca in Japanese quail and spruce grouse (Galliformes). Can. J. Zool., 52, 1577.PubMedCrossRefGoogle Scholar
  44. Ford, D.J. (1974). The effect of microflora on gastrointestinal pH in the chick. Br. Poult. Sci. 15, 131.PubMedCrossRefGoogle Scholar
  45. Frantz, W.L., and J.A. Rillema. (1968). Prolactin-stimulated uptake of amino acids-14C and 3HOH in pigeon crop mu-cosa. Am. J. Physiol., 215, 762.PubMedGoogle Scholar
  46. Friedman, M.H.F. (1939). Gastric secretion in birds. J. Cell. Comp. Physiol., 13, 219.CrossRefGoogle Scholar
  47. Fritz, J.C. (1937). The effect of feeding grit on digestibility in the domestic fowl. Poult. Sci., 16, 75.Google Scholar
  48. Fritz, J.C., W.H. Burrows, and W.H. Titus. (1936). Compari-son of digestibility of gizzardectomized and normal fowls. Poult. Sci., 15, 289.Google Scholar
  49. Gasaway, W.C., D.F. Holleman, and R.G. White. (1975). Flow of digesta in the intestine and cecum of the Rock ptarmigan. Condor, 77, 467.CrossRefGoogle Scholar
  50. Gasaway, W.C. (1976a). Seasonal variation in diet, volatile fatty acid production and size of the cecum of Rock ptarmigan. Comp. Biochem. Physiol. A, 53, 109.CrossRefGoogle Scholar
  51. Gasaway, W.C. (1976b). Volatile fatty acids and metaboliz- able energy derived from cecal fermentation in the Willow ptarmigan. Comp. Biochem. Physiol. A, 53, 115.CrossRefGoogle Scholar
  52. Gasaway, W.C. (1976c). Cellulose digestion and metabolism by captive Rock ptarmigan. Comp. Biochem. Physiol., 54, 179.CrossRefGoogle Scholar
  53. Gibson, R.G., H.W. Colvinjr., and B.I. Hirschowitz. (1974). Kinetics for gastric response in chickens to graded electrical vagal stimulation. Proc. Soc. Exp. Biol. Med., 145, 1058.Google Scholar
  54. Gibson, R.G., H.W. Colvin, Jr., and R.E. Burger. (1975). Ganglion-mediated hydrogen ion and pepsin secretion in Gallus domesticus. Comp. Biochem. Physiol., 51, 633.CrossRefGoogle Scholar
  55. Gruhn, K., A. Hennig, D. Jamroz, and M. Zieger. (1975). Influence of the caecum in geese fed diets containing urea on nitrogen balance and digestibility of nutrients, also on the urea content of excreta and blood. Arch. Exp. Veteri- naermed., 29, 199.Google Scholar
  56. Hainan, E.T. (1949). The architecture of the avian gut and tolerance of crude fiber. Br. J. Nutr., 3, 245.CrossRefGoogle Scholar
  57. Hanssen, I. (1979a). Micromorphological studies on the small intestine and ceca in wild and captive willow grouse (Lago- pus lagopus lagopus). Acta Vet. Scand., 20, 351.PubMedGoogle Scholar
  58. Hanssen, I. (1979b). A comparison of the microbiological conditions in the small intestine and ceca of wild and captive willow grouse (Lagopus lagopus lagopus). Acta Vet. Scand., 20, 365.PubMedGoogle Scholar
  59. Hazelwood, R.L., S.D. Turner, J.R. Kimmel, and H.G. Pollock. (1973). Spectrum effects of a new polypeptide (third hormone?) isolated from the chicken pancreas. Gen. Comp. Endrocrinol., 21, 485.CrossRefGoogle Scholar
  60. Heatley, N.G., F. McElheny, and L. Lepkovsky. (1965). Mea-surement of rate of flow of pancreatic secretion in anesthe-tized chicken. Comp. Biochem. Physiol., 16, 29.PubMedCrossRefGoogle Scholar
  61. Herpol, C. (1964). Activité proteolytique de l’appareil gastri-que d’oiseaux granivores et carnivores. Ann. Biol. Anim. Biochim. Biophys., 4, 239.CrossRefGoogle Scholar
  62. Herpol, C. (1966). Influence de l’ago sur le pH dans le tube digestif de gallus domésticus. Ann. Biol. Anim. Biochim. Biophys., 6, 495.CrossRefGoogle Scholar
  63. Herpol, C. (1967). Etude de l’activité proteolytique des divers organes du système digestif de quelques espèces d’oiseaux en rapport avec leur régime alimentaire. Z. Vgl. Physiol., 57, 209.CrossRefGoogle Scholar
  64. Herpol, C., and G. van Grembergen. (1967). La signification du pH dans le tube digestif de gullus domesticus. Ann. Biol. Anim. Biochim. Biophys., 7, 33.CrossRefGoogle Scholar
  65. Hill, F.W., and D.H. Lumijarvi. (1968) Evidence for an elec-trolyte-conserving function of the colon in chickens. Fed. Proc. Fed. Am. Soc. Exp. Biol., 27, 421 (Abstr. 1165).Google Scholar
  66. Hokin, L.E., and M.R. Hokin. (1953). Enzyme secretion and the incorporation of 32P into phospholipids of pancreas slices. J. Biol. Chem., 203, 967.PubMedGoogle Scholar
  67. Holdsworth, E.S. (1965). Vitamin D3 and calcium adsorption in the chick. Biochem. J., 96, 475.PubMedGoogle Scholar
  68. Hulan, H.W., and F.H. Bird. (1972). Effect of fat level in isonitrogenous diets on composition of avian pancreatic juice. J. Nutr., 102, 459.PubMedGoogle Scholar
  69. Hulan, H.W., G. Moreau, and F.H. Bird. (1972). A method for cannulating the main pancreatic duct of chickens: The continuous collection of avian pancreatic juice. Poult. Sci., 51, 531.PubMedGoogle Scholar
  70. Hurwitz, S., and A. Bar. (1965). Absorption of calcium and phosphorus along the gastrointestinal tract of the laying fowl as influenced by dietary calcium and egg shell forma-tion. J. Nutr., 86, 433.PubMedGoogle Scholar
  71. Hurwitz, S., and A. Bar. (1968). Regulation of pH in the intestine of the laying fowl. Poult. Sci., 47, 1029.PubMedGoogle Scholar
  72. Hurwitz, S., and A. Bar. (1969). Relation between the lumen blood-electrochemical potential difference of calcium, cal-cium absorption and calcium-binding protein in the intes-tine of the fowl. J. Nutr., 99, 217.PubMedGoogle Scholar
  73. Hurwitz, S., and A. Bar. (1971). Relationship of duodenal Ca-binding protein to calcium absorption in the laying fowl. Comp. Biochem. Physiol. A, 41, 735.Google Scholar
  74. Hurwitz, S., A. Bar, and I. Cohen. (1973). Regulation of calcium absorption by fowl intestine. Am. J. Physiol., 225, 150.PubMedGoogle Scholar
  75. Hurwitz, S., H.C. Harrison, and H.E. Harrison. (1967). Effect of vitamin D3 on the in vitro transport of calcium by the chick intestine. J. Nutr., 91, 319.PubMedGoogle Scholar
  76. Hurwitz, S., U. Eisner, D. Dubrov, D. Skelan, G. Risenfeld, and A. Bar. (1979). Protein, fatty acids, calcium and phos-phate absorption along the gastrointestinal tract of the young turkey. Comp. Biochem. Physiol. A, 62, 847.CrossRefGoogle Scholar
  77. Inman, D.L. (1973). Cellulose digestion in Ruffed grouse, Chukar partridge, and Bobwhite quail. J. Wildl. Manage., 37, 114.CrossRefGoogle Scholar
  78. Ivanov, N., and R. Gotev. (1962). Untersuchungen über die aussensekretorische Tätigkeit der Bauchspeicheldrüse bei Hühnern. Arch. Tierernaeh., 12, 65.CrossRefGoogle Scholar
  79. Jerret, S.A., and W.R. Goodge. (1973). Evidence for amylase in avian salivary glands. J. Morphol., 139, 27.CrossRefGoogle Scholar
  80. Johnson, E., and R.L. Hazelwood. (1982). Avian pancreatic polypeptide (APP) levels in fasted-refed chickens: Locus of post-prandial trigger. Proc. Soc. Exp. Biol. Med., 169, 175.PubMedGoogle Scholar
  81. Jung, L., and M. Pierre. (1933). Sur le role de la salive chez les oiseaux granivores. C. R. Soc. Biol. 113, 115.CrossRefGoogle Scholar
  82. Karpov, L.V. (1919). O perevarivanii nekotorykh rastitelnykh i zhivotnykh belkov gusiiym zheludochnom sokom. Fiziol. Zh SSSR im I.M. Sechenova 2, 185. Russ. Physiol. J. 2, 185 (In Russian) (Physiol. Abstr. 5, 469, 1920). In Sturkie (1965).Google Scholar
  83. Kese, A.G., and B.E. March. (1975). The role of the avian ceca in energy and protein metabolism (Abstr.). Poult. Sei., 54, 1781.Google Scholar
  84. Kessler, C.A., B.I. Hirschowitz, P.G. Burhol, and G. Sachs. (1972). Methoxyflurane (penthrane) anesthesia effect on histamine stimulated gastric secretion in the chickens. Proc. Soc. Exp. Biol. Med., 139, 1340.PubMedGoogle Scholar
  85. Kessler, J.W., T.H. Nguyen, and O.P. Thomas. (1981). The amino acid excretion values in intact and cecectomized neg-ative control roosters used for determining metabolic plus endogenous urinary losses. Poult. Sei., 60, 1576.Google Scholar
  86. Kimmel, J.R., and H.G. Pollock. (1975). Factors affecting blood levels of avian pancreatic polypeptide (APP), a new pancreatic hormone. Fed. Proc. Fed. Am. Soc. Exp. Biol., 34, 454.Google Scholar
  87. Kimmel, J.R., H.G. Pollock, and R.L. Hazelwood. (1968). Isolation and characterization of chicken insulin. Endocrinology, 83, 1323.PubMedCrossRefGoogle Scholar
  88. Kokas, E., and W. Brunson, Jr. (1969). Gastric secretion inhi-bition in chickens. Physiologist, 12, 272.Google Scholar
  89. Kokas, E., L. Phillips, Jr., and W.D. Brunson, Jr. (1967). The secretory activity of the duodenum in chickens. Comp. Biochem. Physiol., 22, 81.PubMedCrossRefGoogle Scholar
  90. Kokas, E., S.H. Kaufman, and J.C. Long. (1971). Effect of glucagon on gastric and duodenal secretion in chickens. Z. Vgl. Physiol., 74, 315.CrossRefGoogle Scholar
  91. Kokue, E., and T. Hayama. (1972). Effects of starvation and feeding in the endocrine pancreas of chicken. Poult. Sei., 51, 1366.Google Scholar
  92. Kokue, E., and T. Hayama. (1975). Doubtful role of endoge-nous gastrin in chicken gastric secretion by vagal stimulation. Experientia, 31, 197.PubMedCrossRefGoogle Scholar
  93. Lai, H.C., and G.E. Duke. (1978). Colonic motility in domes-tic turkeys. Am. J. Dig. Dis., 23, 673.PubMedCrossRefGoogle Scholar
  94. Larsson, L.I., F. Sundler, R. Hakanson, H.G. Pollock, and J.R. Kimmel. (1974a). Localization of APP, a postulated new hormone to a pancreatic cell type. Histochemistry, 42, 377.PubMedCrossRefGoogle Scholar
  95. Larsson, L.I., F. Sundler, R. Hakanson, J.F. Rehfeld, and F. Stadil. (1974b). Distribution and properties of gastrin cells in the gastrointestinal tract of the chicken. Cell Tissue Res., 154, 409.PubMedCrossRefGoogle Scholar
  96. Lavrentera, G.F. (1963). (Bile secretion in chickens) (in Rus-sian). Tr. Gor’k. Skho Inst., 13, 80. In Ziswiler and Farner (1972)Google Scholar
  97. Laws, B.M., and J.H. Moore. (1963)- Some observations on pancreatic amylase and intestinal maltase of the chick. Can. J. Biochem. Physiol., 41, 2107.PubMedCrossRefGoogle Scholar
  98. Leasure, E.E., and R.P. Link, (1940). Studies on the saliva of the hen. Poult. Sci., 19, 131.Google Scholar
  99. Lepkovski, S., and F. Furuta. (1970). Lipase in pancreas and intestinal contents of chickens fed, heated and raw soybean diets. Poult. Sci., 49, 192.Google Scholar
  100. Lin, G.L., J.A. Himes, and C.E. Cornelius. (1974). Bilirubin and biliverdin excretion by the chicken. Am. J. Physiol., 226, 881.PubMedGoogle Scholar
  101. Lindsay, O.B., and B.E. March. (1967). Intestinal absorption of bile salts in the cockerel. Poult. Sci., 46, 164.PubMedGoogle Scholar
  102. Long, J.F. (1967). Gastric secretion in unanesthetized chick-ens. Am. J. Physiol., 212, 1303.PubMedGoogle Scholar
  103. McBee, R.H. (1977). Fermentation in the hindgut. In “Mi-crobial Ecology of the Gut” (R.T.J. Clark and T. Bauchop, Eds.). New York: Academic Press, Chapter 4, p. 185.Google Scholar
  104. McNab, J.M. (1973). The avian caeca: A review. World’s Poult. Sci. J., 29, 251.CrossRefGoogle Scholar
  105. Medl, M., and E. Scharrer. (1978). Active trans-epithelial transport of sodium across chicken crop mucosa. Zentralbl. Veterinaermed., 25, 441.CrossRefGoogle Scholar
  106. Mongin, P. (1976). Ionic constituents and osmolarity of the small intestinal fluids of the laying hen. Br. Poult. Sci., 17, 383.PubMedCrossRefGoogle Scholar
  107. Mongin, P., and X. deLaage. (1977). A study of water and electrolyte movements through the duodenal mucosa in laying fowl by perfusion in vivo. C. R. Hebd. Seances Acad. Sci. Naturelles, 285, 225.Google Scholar
  108. Mongin, P., M. Larbier, N.C. Baptista, D. Licois, and P. Coudert. (1976). A comparison of the osmotic pressure along the digestive tract of the domestic fowl and the rabbit. Br. Poult. Sci., 17, 379.PubMedCrossRefGoogle Scholar
  109. Mortensen, A., and A. Tindall. (1981). On caecal synthesis and absorption of amino acids and their importance for nitrogen recycling in Willow ptarmigan (Lagopus lagopus lagopus). Acta Physiol. Scand., 113, 465.PubMedCrossRefGoogle Scholar
  110. Moss, R. (1977). The digestion of heather by Red grouse during the spring. Condor. 79, 471.CrossRefGoogle Scholar
  111. Mykkanen, H.M., and R.H. Wasserman. (1981). Gastrointes-tinal absorption of lead (203-Pb) in chicks: Influence of lead, calcium and age. J. Nutr., Ill, 1757.Google Scholar
  112. Nesheim, M.C., and K.J. Carpenter. (1967). The digestion of heat-damaged protein. Br. J. Nutr., 21, 399.PubMedCrossRefGoogle Scholar
  113. Niess, E., C.A. Ivy, and M.C. Niesheim. (1972). Stimulation of gallbladder emptying and pancreatic secretion in chicks by soybean whey protein. Proc. Soc. Exp. Biol. Med., 140, 291.PubMedGoogle Scholar
  114. Nilsson, A. (1974). Isolation, amino acid composition and terminal amino acid residue of the vasoactive octacosapep- tide from chicken intestine. Partial purification of chicken secretin. FEBS Lett., 47, 284.PubMedCrossRefGoogle Scholar
  115. Nitsan, Z., and E. Alumot. (1963). Role of the caecum in the utilization of raw soybean in chicks. J. Nutr., 80, 299.PubMedGoogle Scholar
  116. Nitsan, Z., I. Nir, Y. Dror, and I. Bruckental. (1973). The effect of forced feeding and dietary protein level on en-zymes associated with digestion, protein and carbohydrate metabolism in geese. Poult. Sci., 52, 474.PubMedGoogle Scholar
  117. Norris, E., C. Norris, andJ.B. Sken. (1975). Regulation and grinding ability of grit in the gizzard of Norwegian Willow ptarmigan (Lagopus lagopus). Poult. Sci., 54, 1839.PubMedGoogle Scholar
  118. Olsson, N., G. Kihlen, A. Ruudvere, C. Wadne, and G. Anstrand. (1950). Smaltbarhetsforsok med fjaderfa. Kgl. Lantbrukshoegsk. Statens Lantbruksfoer. Medd. 43., (In Ziswiler and Farner, 1972.)Google Scholar
  119. Otani, I. (1966). Fundamental studies on the digestion in the domestic fowl. II. Effects of the grit on the movements of gizzard. J. Fac. Fish. Anim. Husb. Hiroshima Univ., 6, 457.Google Scholar
  120. Otani, I. (1967). Fundamental studies on the digestion in the domestic fowl. III. Effects of the grit on the developments of gizzard. J. Fac. Fish. Anim. Husb. Hiroshima Univ. 7, 119.Google Scholar
  121. Patrick, H., and G.K. Schweitzer. (1952). Absorption and retention of radioactive phosphorus by chicks. Poult. Sei. 31, 888.Google Scholar
  122. Polak, J.M., A.G.E. Pearce, C. Adams, and J.C. Garaud. (1974). Immunohistochemistry and ultrastructural studies on the endocrine polypeptide (APUD) cells of the avian GI tract. Experentia, 30, 564.CrossRefGoogle Scholar
  123. Polin, D., E.R. Wynosky, M. Loukides, and C.C. Porter. (1967). A possible urinary back flow to ceca revealed by studies on chicks with artificial anus fed amprolium-C14 or thiamine-C14. Poult. Sei., 46, 89.Google Scholar
  124. Pritchard, P.J. (1972). Digestion of sugars in the crop. Comp. Biochem. Physiol. A, 43, 195.PubMedCrossRefGoogle Scholar
  125. Radhakrishna, P.C.R., and S.G. Nair. (1974). Studies on some of the gastrointestinal mucosal enzymes in chicks and ducklings. Indian, Vet. J., 51, 683.Google Scholar
  126. Rouff, H.J., and K.F. Sewing. (1970). Die Wirkung von Histamine, Carbacol, Pentagastrin und Hhnergastrinextrak- ten auf die Magensekretion von nicht narkotisierten Hhnern mit einer Magenfistel. Naunyn-Schmiedsberg’s Arch. Pharmacol., 267, 170.Google Scholar
  127. Rutter, W.J., P. Krichevsky, H.M. Scott, and R.H. Hansen. (1953). The metabolism of lactose and galactose in the chick. Poult. Sei., 32, 706.Google Scholar
  128. Sahba, M.M.,J.A. Morisset, and P.D. Webster. (1970). Synthetic and secretory effects of cholecystokinin-pancreozymin on the pigeon pancreas. Proc. Soc. Exp. Biol. Med., 134, 728.PubMedGoogle Scholar
  129. Schang, M.J., I.R. Sibbald, and R.M.G. Hamilton. (1982). Comparison of two direct bioassays using young chicks and two internal indicators for estimating the metabolizable energy content of feeding stuffs. Poult. Sei., 62, 117.Google Scholar
  130. Schneitz, C., E. Seuna, and A. Rizzo. (1981). The anaerobically cultured cecal flora of adult fowls that protects chickens from Salmonella infections. Acta Pathol. Microbiol. Scand., B, 89, 109.Google Scholar
  131. Sibbald, I.R. (1976). A bioassay for true metabolizable energy in feeding stuffs. Poult. Sei., 55, 303.Google Scholar
  132. Skadhauge, E. (1981). “Osmoregulation in Birds.” New York: Springer-Verlag.Google Scholar
  133. Smith, C.J.V., and D.R. Pilz. (1971). Feeding behavior of chickens: Effect of cropectomy. Poult. Sei., 50, 226.Google Scholar
  134. Smith, C.R., and M.E. Richmond. (1972). Factors influencing pellet egestion and gastric pH in the barn owl. Wilson Bull., 84, 179.Google Scholar
  135. Soedarmo, D., M.R. Kare, and R.H. Wasserman. (1961). Observations on the removal of sugar from the mouth and crop of the chicken. Poult. Sei., 40, 123.Google Scholar
  136. Starcher, B.C. (1969). Studies on mechanism of copper absorption in chick. J. Nutr., 97, 321.PubMedGoogle Scholar
  137. Sturkie, P.D. (Ed.) (1965). “Avian Physiology” ( 2nd ed. ). Ithaca: Cornell University Press.Google Scholar
  138. Sturkie, P.D. (Ed.) (1976). “Avian Physiology” ( 3rd ed. ). New York: Springer-Verlag.Google Scholar
  139. Sunde, M.L., W.W. Gravens, C.A. Elvehjem, and J.G. Halpin. (1950). The effect of diet and cecectomy on the intestinal synthesis of biotin. Poult. Sei., 29, 10.Google Scholar
  140. Suso, F.A., and H.M. Edwards. (1968). Influence of various chelating agents on absorption of 60Co, 59Fe, 54Mn and 65Zn by chickens. Poult. Sei., 47, 1417.Google Scholar
  141. Thomas, D.H., M. Jallageas, B.G. Munck, and E. Skadhauge. (1980). Aldosterone effects on electrolyte transport of the lower intestine (coprodeum and colon) of the fowl (Gallus domesticus) in vitro. Gen. Comp. Endocrinol., 40, 44.PubMedCrossRefGoogle Scholar
  142. Thompson, D.C., and D.A. Boag. (1975). Role of the caeca in Japanese quail energetics. Can. J. Zool., 53, 166.PubMedCrossRefGoogle Scholar
  143. Thornburn, C.C., and J.S. Willcox. (1965). The ceca of the domestic fowl and digestion of the crude fiber complex. I. Digestibility trials with normal and caecectomized birds. Br. Poult. Sei., 6, 23.CrossRefGoogle Scholar
  144. Titus, H.W. (1955). “The Scientific Feeding of Chickens” ( 3rd ed. ). Danville, Illinois: Interstate Press.Google Scholar
  145. Tomimatsu, Y., J.J. Clary, andJ.J. Bartulovich. (1966). Physical characterization of oviinhibitor, a trypsin and chymo- trypsin inhibitor from chicken egg white. Arch. Biochem. Biophys., 115, 36.CrossRefGoogle Scholar
  146. Tortuero, F., A. Brenas, and J. Riperez. (1975). The influence of intestinal (ceca) flora on serum and egg yolk cholesterol levels in laying hens. Poult. Sei., 54, 1935.Google Scholar
  147. Turk, D.E. (1968). Dietary antibiotics and the absorption of zinc-65 and 131I-labeled oleic acid. Poult. Sei., 47, 1768.Google Scholar
  148. Turk, D.E. (1973). Intestinal parasitism and nutrient absorption. Fed. Proc. Fed. Am. Soc. Exp. Biol., 3, 106.Google Scholar
  149. Turk, D.E., and J.F. Stephens. (1970). Eimeria necatrix and zinc absorption in the chick: Effect of sulfa-quinoxaline treatment of the infection. Poult. Sei., 49, 285.Google Scholar
  150. Vaillant, C., R. Dimaline, and G.J. Dockray. (1980). The distribution and cellular origin of vasoactive intestinal poly-peptide in the avian gastrointestinal tract and pancreas. Cell Tissue Res., 211, 571.CrossRefGoogle Scholar
  151. Vohra, P., and N. Gonzales. (1969). The effect of EDTA on the preferential intestinal absorption of zinc than manganese in turkey poults. Poult. Sei., 48, 1509.Google Scholar
  152. Walter, W.G. (1939). Bedingte Magensaftsekretion bei der Ente. Acta Brevia Neerl. Physiol. Pharmacol. Microbiol.. 9, 56.Google Scholar
  153. Webling, D.D., and E.S. Holdsworth. (1965). The effect of bile, bile acids and detergents on calcium absorption in the chick. Biochem. J., 97, 408.PubMedGoogle Scholar
  154. Webling, D.D., and E.S. Holdworth. (1966a). Bile salts and calcium absorption. Biochem. J., 100, 652.PubMedGoogle Scholar
  155. Webling, D.D., and E.S. Holdsworth. (1966b). Bile and the absorption of strontium and iron. Biochem. J., 100, 661.PubMedGoogle Scholar
  156. Webster, P.D., and M.P. Tyor. (1966). Effect of intravenous pancreozymin on amino acid in vitro by pancreatic tissue. Am. J. Physiol., 211, 157.PubMedGoogle Scholar
  157. Winget, C.M., G.C. Ashton, and A.J. Cawley. (1962). Changes in gastrointestinal pH associated with fasting in laying hen. Poult. Sei., 41, 115.Google Scholar
  158. Ziswiler, V., and D.S. Farner. (1972). Digestion and digestive system. In “Avian Biology,” Vol. 2 ( D.S. Farner and J.R. King, Eds.). London: Academic Press, p. 343.Google Scholar
  159. Zoppi, G., and D.H. Shmerling. (1969). Intestinal disacchari- dase activities in some birds, reptiles and mammals. Comp. Biochem. Physiol., 29, 289.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1986

Authors and Affiliations

  • G. E. Duke

There are no affiliations available

Personalised recommendations