Nervous System

  • C. A. Benzo

Abstract

The vertebrate nervous system is responsible both for maintaining contact between the animal and its external and internal environments and for the proper adjustments of the animal to the changes in these environments. The animal maintains contact with the external environment through sensory receptors at the surface of the body. The internal environment is monitored by receptors located in muscles, joints, ligaments, and visceral organs. Basically, adjustments to changes in either environment are brought about by reflex arcs consisting of afferent (sensory) neurons, centers within the spinal cord or brain, and efferent (motor) neurons. Afferent neurons carry sensory information to the central nervous system, and efferent neurons convey motor impulses from the central nervous system to various effector mechanisms, such as muscles and glands. The nervous system works in harmony with the endocrine system to coordinate the many complex activities involved in normal body functions. The nervous system is the rapid coordinator in response to a given stimulus, whereas the endocrine system is more deliberate in its action and is brought into play for conditions that require a more intense or prolonged response.

Keywords

Arsenic Respiration Testosterone Tryptophan Fibril 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdalla, A.B., and A.S. Kind. (1979). The afferent and efferent myelinated fibers of the avian cervical vagus. J. Anat., 128, 135.PubMedGoogle Scholar
  2. Adal, M.N. (1973). The fine structure of the intrafusal muscle fibres of muscle spindles in the domestic fowl. J. Anat., 115, 407.PubMedGoogle Scholar
  3. Adal, M.N., and S.B. Chew-Cheng. (1980). The sensory ending of duck muscle spindles. J. Anat., 131, 657.PubMedGoogle Scholar
  4. Åkerman, B. (1966). Behavioral effects of electrical stimulation in the forebrain of the pigeon. II: Protective behavior. Behaviour, 26, 339.PubMedCrossRefGoogle Scholar
  5. Akester, A.R., B. Akester, and S.P. Mann. (1969). Catecholamines in the avian heart. J. Anat., 104, 591.PubMedGoogle Scholar
  6. Ali, H.A., and J. McLelland. (1978). Avian enteric nerve plexuses. A histochemical study. Cell Tissue Res., 189, 537.PubMedCrossRefGoogle Scholar
  7. Aprison, M.H., and R. Takahaski. (1965). Biochemistry of the avian central nervous system: II. 5-Hydroxytryptamine, acetylcholine, 3,4, dihydroxyphenylethylamine and norepinephrine in several discrete areas of the pigeon brain. J. Neurochem., 12, 221.PubMedCrossRefGoogle Scholar
  8. Aprison, M.H., R. Takahaski, and T.L. Folkerth. (1964). Biochemistry of the avian central nervous system: I. 5-Hydroxytryptophan decarboxylase, monoamine oxidase and choline acetylase-acetylcholinesterase systems in several discrete areas of the pigeon brain. J. Neurochem., 11, 341.PubMedCrossRefGoogle Scholar
  9. Arends, J.J., and J.L. Dubbeldam. (1982). Exteroceptive and proprioceptive afferents of the trigeminal and facial motor nuclei in the mallard (Anas platyrhynchos). J. Comp. Neurol., 209, 313.PubMedCrossRefGoogle Scholar
  10. Ariëns-Kappers, C.U., G.C. Huber, and E.C. Crosby. (1936). “The Comparative Anatomy of the Nervous System of Vertebrates Including Man,” Vols. 1 and 2. New York: Macmillan.Google Scholar
  11. Banks, P., and D. Mayor. (1972). Intra-axonal transport in noradrenergic neurons in the sympathetic nervous system. In “Neurotransmitters and Metabolic Regulation,” Vol. 36 ( R.M.S. Smellie, Ed.). Biochemical Society Symposium, p. 133.Google Scholar
  12. Barr, M.L., and J.A. Kiernan. (1983). “The Human Nervous System,” 4th ed. Philadelphia: Harper and Row.Google Scholar
  13. Bennett, T. (1974). The peripheral and autonomic nervous systems. In “Avian Biology,” Vol. 4 ( D.S. Farner and J.R. King, Eds.). New York: Academic Press, p. 1.Google Scholar
  14. Bennett, T., and T. Malmfors. (1970). The adrenergic nervous system of the domestic fowl (Gallus domesticus L.). Z. Zellforsch. Mikrosk. Anat., 106, 22.PubMedCrossRefGoogle Scholar
  15. Bennett, T., G. Burnstock, J.L.S. Cobb, and T. Malmfors. (1970). An ultrastructural and histochemical study of the short-term effects of 6-hydroxydopamine on adrenergic nerves in the domestic fowl. Br. J. Pharmacol., 38, 802.PubMedGoogle Scholar
  16. Benzo, C.A. (1983). The hypothalamus and blood glucose regulation. Life Sci., 32, 2509.PubMedCrossRefGoogle Scholar
  17. Benzo, C.A., and L.D. DeGennaro. (1974). Glycogen synthase and phosphorylase in the developing chick glycogen body. J. Exp. Zool., 188, 375.PubMedCrossRefGoogle Scholar
  18. Benzo, C.A., and L.D. DeGennaro. (1981). Glycogen metabolism in the developing accessory lobes of Lachi in the nerve cord of the chick: Metabolic correlations with the avian glycogen body. J. Exp. Zool., 215, 47.PubMedCrossRefGoogle Scholar
  19. Benzo, C.A., and L.D. DeGennaro. (1983). An hypothesis of function for the avian glycogen body: A novel role for glycogen in the central nervous system. Med. Hypotheses, 10, 69.PubMedCrossRefGoogle Scholar
  20. Benzo, C.A., L.D. DeGennaro, and S.B. Stearns. (1975). Glycogen metabolism in the developing chick glycogen body: Functional significance of the direct oxidative pathway. J. Exp. Zool., 193, 161.PubMedCrossRefGoogle Scholar
  21. Berk, M.L., and A.B. Butler. (1981). Efferent projections of the medial preoptic nucleus and medial hypothalamus in the pigeon. J. Comp. Neurol., 203, 379.PubMedCrossRefGoogle Scholar
  22. Berkhoudt, H., B.G. Klein, and H.P. Zeigler. (1982). Afferents to the trigeminal and facial motor nuclei in the pigeon (Columba livia): Central connections of jaw motoneurons. J. Comp. Neurol., 209, 301.PubMedCrossRefGoogle Scholar
  23. Bolton, T.B. (1971a). The structure of the nervous system. In “Physiology and Biochemistry of the Domestic Fowl” ( D.J. Bell and B.M. Freeman, Eds.). New York: Academic Press, p. 641.Google Scholar
  24. Bolton, T.B. (1971b). The physiology of the nervous system. In “Physiology and Biochemistry of the Domestic Fowl” ( D.J. Bell and B.M. Freeman, Eds.). New York: Academic Press, p. 675.Google Scholar
  25. Bolton, T.B. (1976). The Nervous System. In “Avian Physiology,” 3rd ed. ( P.D. Sturkie, Ed.). New York: Springer-Verlag, p. 4.Google Scholar
  26. Bolton, T.B., and W.C. Bowman. (1969). Adrenoreceptors in the cardiovascular system of the domestic fowl. Eur. J. Pharmacol., 5, 121.PubMedCrossRefGoogle Scholar
  27. Bondy, S.C., and J.L. Purdy. (1977). Putative neurotransmitters of the avian visual pathway. Brain Res., 119, 417.PubMedCrossRefGoogle Scholar
  28. Boord, R.L. (1969). The anatomy of the avian auditory system. Ann. N.Y. Acad. Sci., 167, 186.CrossRefGoogle Scholar
  29. Bottjer, S.W., and A.P. Arnold. (1982). Afferent neurons in the hypoglossal nerve of the zebra finch (Poephila guttata): Localization with horseradish peroxidase. J. Comp. Neurol., 210, 190.PubMedCrossRefGoogle Scholar
  30. Brecha, N.C., and H.J. Karten. (1981). Organization of the avian accessory optic system. Ann. N.Y. Acad. Sci., 374, 215.PubMedCrossRefGoogle Scholar
  31. Brown, J.L. (1969). The control of avian vocalization by the central nervous system. In “Bird Vocalizations” ( R.A. Hinde, Ed.). Cambridge: Cambridge University Press, p. 79.Google Scholar
  32. Brown, J.L. (1971). An exploration study of vocalization areas in the brain of the red winged blackbird (Angelaius phoeniceus). Behavior, 39, 91.CrossRefGoogle Scholar
  33. Brown, C.M., V. Molony, A.S. King, and R.D. Cook. (1972). Fibre size and conduction velocity in the vagus of the domestic fowl (Gallus domesticus). Acta Anat., 83, 451.PubMedCrossRefGoogle Scholar
  34. Bulat, M., and Z. Supek. (1968). Passage of 5-hydroxytryptamine through the blood-brain barrier, its metabolism in the brain and elimination of 5-hydroxyindolacetic acid from the brain tissue. J. Neurochem., 15, 383.PubMedCrossRefGoogle Scholar
  35. Burack, W.R., and A. Badger. (1964). Sequential appearance of dopa decarboxylase, dopamine β-oxidase and norepinephrine N-methyltransferase activities in the embryonic chick. Fed. Proc. Fed. Am. Soc. Exp. Biol., 23, 561.Google Scholar
  36. Burger, R.E., and M.R. Fedde. (1964). Physiological and pharmacological factors which influence the incidence of acute pulmonary alterations following vagotomy in the domestic cock. Poult. Sci., 43, 384.Google Scholar
  37. Cabot, J.B., and D.H. Cohen. (1977). Avian sympathetic cardiac fibers and their cells or origin: Anatomical and electro-physical characteristics. Brain Res., 131, 73.PubMedCrossRefGoogle Scholar
  38. Callingham, B.A., and D.F. Sharman (1970). The concentration of catecholamines in the brain of the domestic fowl (Gallus domesticus). Br. J. Pharmacol., 40, 1.PubMedGoogle Scholar
  39. Cantino, D., and E. Mugnaini. (1975). The structural basis for electrotonic coupling in the avian ciliary ganglion. A study with thin sectioning and freeze-fracturing. J. Neurocytol., 4, 505.PubMedCrossRefGoogle Scholar
  40. Carpenter, F.G., and R.M. Bergland. (1957). Excitation and conduction in immature nerve fibres of the developing chick. Am. J. Physiol., 190, 371.PubMedGoogle Scholar
  41. Chaplin, J.P., and A. Demers. (1978). “Primer of Neurology and Neurophysiology.” New York: John Wiley and Sons.Google Scholar
  42. Clearwaters, K. (1954). Regeneration of the spinal cord of the chick. J. Comp. Neurol., 101, 317.PubMedCrossRefGoogle Scholar
  43. Cohen, D.H. (1967a). Visual intensity discrimination in pigeons following unilateral and bilateral tectal lesions. J. Comp. Physiol. Psychol., 63, 172.CrossRefGoogle Scholar
  44. Cohen, D.H. (1967b). The hyperstriatal region of the avian forebrain. A lesion study of possible functions including its role in cardiac and respiratory conditioning. J. Comp. Neurol., 131, 559.CrossRefGoogle Scholar
  45. Corner, M.A., J.P. Schadé, J. Sedláček, R. Stoeckart, and A.P.C. Bot. (1967). Developmental patterns in the central nervous system of birds. I. Electrical activity in the cerebral hemisphere, optic lobe & cerebellum. Prog. Brain Res., 26, 145.PubMedCrossRefGoogle Scholar
  46. Corner, M.A., W.L. Bakhuis, and C. van Wingerden. (1973). Sleep and wakefulness during early life in the domestic chicken and their relationship to hatching and embryonic mortality. In “Prenatal Ontogeny of the Central Nervous System and Behaviour” ( Gottlieb G., Ed.). Chicago: University of Chicago Press.Google Scholar
  47. Couraud, J.Y., and L. DiGiamberardino. (1980). Axonal transport of the molecular forms of acetylcholinesterase in chick sciatic nerve. J. Neurochem., 35, 1053.PubMedCrossRefGoogle Scholar
  48. Couraud, J.Y., L. DiGiamberardino, and R. Hassig. (1982). Slow transport of the molecular forms of butyrlcholinesterase in a peripheral nerve. Neuroscience (Oxford), 7: 1015.Google Scholar
  49. Cowan, W.M., L. Adamson, and T.P.S. Powell. (1961). An experimental study of the avian visual system. J. Anat., 95, 545.PubMedGoogle Scholar
  50. Cuenod, R.J., A. Beaudet, V. Canzek, P. Streit, and J.C. Reubi. (1981). Glutamatergic pathways in the pigeon and the rat brain. Adv. Biochem. Psychopharmacol., 27, 57.PubMedGoogle Scholar
  51. de Anda, G., and M.A. Rebollo. (1967). The neuromuscular spindles in the adult chicken. 1. Morphology. Acta Anat., 67, 437.CrossRefGoogle Scholar
  52. DeGennaro, L.D. (1982). The Glycogen Body. In “Avian Biology,” Vol. 6 ( D.S. Farner and J.R. King, Eds.). New York: Academic Press, p. 341.Google Scholar
  53. DeGennaro, L.D., and C.A. Benzo. (1976). Ultrastructural characterization of the accessory lobes of Lachi (Hofmann’s Nuclei) in the nerve cord of the chick. I. Axoglial synapses. J. Exp. Zool., 198, 97.CrossRefGoogle Scholar
  54. DeGennaro, L.D., and C.A. Benzo. (1978). Ultrastructural characterization of the accessory lobes of Lachi (Hofmann’s nuclei) in the nerve cord of the chick. II. Scanning and transmission electron microscopy with observations on the glycogen body. J. Exp. Zool., 206, 229.CrossRefGoogle Scholar
  55. DeLanerolle, N., and R.J. Andrew. (1974). Midbrain structures controlling vocalization in the domestic chick. Brain Behav. Evol., 10, 354.CrossRefGoogle Scholar
  56. Denbow, D.M., H.P. Van Krey, and J.A. Cherry. (1983). Feeding and drinking response of young chicks to injections of serotonin into the lateral entricle of the brain. Poultr. Sci., 61, 150.Google Scholar
  57. DePlazas, S.F. (1982). Ontogenesis of gamma amino butyric acid receptor sites in chick embryo cerebellum. Dev. Brain Res., 3, 263.CrossRefGoogle Scholar
  58. DeSantis, V.P., W. Längsfeld, R. Lindmar, and K. Loffelholz. (1975). Evidence for noradrenaline and adrenaline as sympathetic transmitters in the chicken. Br. J. Pharmacol., 55, 345.Google Scholar
  59. Desmedt, J.E., and P.J. Delwaide. (1963). Neuronal inhibition in a bird. Effect of strychnine and picrotoxin. Nature (London), 200, 585.CrossRefGoogle Scholar
  60. DeVoogd, T.J., and F. Nottenbohm. (1981). Sex differences in dendritic morphology of a song control nucleus in the canary: A quantitative Golgi study. J. Comp. Neurol., 196, 309.PubMedCrossRefGoogle Scholar
  61. Dewhurst, W.G., and E. Marley. (1965). The effects of α-methyl derivatives of noradrenaline, phenylethylamine and tryptamine on the central nervous system of the chicken. Br. J. Pharmacol., 25, 682.Google Scholar
  62. Dorward, P.K., and A.K. Mclntyre. (1971). Responses of vibration-sensitive receptors in the interosseous region of the duck’s hind limb. J. Physiol. ( London ), 219, 77.Google Scholar
  63. Dubbeldam, J.L., and H.J. Karten. (1978). The trigeminal system in the pigeon (Columba livia). I. Projections of the Gasserian ganglion. J. Comp. Neurol., 180, 661.PubMedCrossRefGoogle Scholar
  64. Dube, L., and A. Parent. (1981). The monoamine-containing neurons in avian brain 1. A study of the brain stem of the chicken (Gallus gallus domesticus) by means of fluorescence and acetylcholinesterase (E.C.3.1.1.7) histochemistry. J. Comp. Neurol., 196, 695.PubMedCrossRefGoogle Scholar
  65. Duff, T.A., G. Scott, and R. Mai. (1981). Regional differences in pigeon optic tract, chiasm, and retino-receptive layers of the optic tectum. J. Comp. Neurol., 198, 231.PubMedCrossRefGoogle Scholar
  66. Eden, A.R., and M.J. Correia. (1982). Identification of multiple groups of efferent vestibular neurons in the adult pigeon using horseradish peroxidase and DAPI. Brain Res., 248, 201.PubMedCrossRefGoogle Scholar
  67. Enemar, A., B. Falck, and R. Håkanson. (1965). Observations on the appearance of norepinephrine in the sympathetic nervous system of the chick embryo. Dev. Biol., 11, 268.PubMedCrossRefGoogle Scholar
  68. Erichsen,J.T., A. Reiner, and H.J. Karten. (1982). Co-occurrence of substance P-like and leucine enkephalin-like immunoreactivities in neurons and fibers of the avian nervous system. Nature (London), 295, 407.CrossRefGoogle Scholar
  69. Filliatreau, G., and L. DiGiamberardino. (1982). Quantitative analysis of axonal transport of cytoskeletal proteins in chicken oculomotor nerve. J. Neurochem., 39, 1033.PubMedCrossRefGoogle Scholar
  70. Fink, A.S., P.M. Hefferan, and R.R. Howell. (1975). Enzymatic and biochemical characterization of the avian glycogen body. Comp. Biochem. Physiol. A, 508, 525.Google Scholar
  71. Firbas, W., and G. Muller. (1983). The efferent innervation of the avian cochlea. Hear. Res., 10, 109.PubMedCrossRefGoogle Scholar
  72. Frontali, N. (1964). Brain glutamic acid decarboxylase and synthesis of y-aminobutyric acid in vertebrate and invertebrate species. In “Comparative Neurochemistry” (D. Richter, Ed.). Proc. Int. Neurochem. Symp. 5th, 1962. Oxford: Pergamon Press, p. 185.Google Scholar
  73. Gal, E.M., and F.D. Marshal. (1964). The hydroxylation of tryptophan by pigeon brain in vitro. Prog. Brain Res., 8, 56.CrossRefGoogle Scholar
  74. Gamlin, P.D., A. Reiner, and H.J. Karten. (1982). Substance P-containing neurons of the avian suprachiasmic nucleus project directly to the nucleus of Edinger-Westphal. Proc. Natl. Acad. Sci. U.S.A., 79, 3891.PubMedCrossRefGoogle Scholar
  75. Garcia-Austt, E. (1954). Development of electrical activity in cerebral hemispheres of the chick embryo. Proc. Soc. Exp. Biol. Med., 86, 348.PubMedGoogle Scholar
  76. Gilman, T.T., F.L. Marcuse, and A.U. Moore. (1950). Animal hypnosis: A study in the induction of tonic immobility in chickens. J. Physiol. Psychol., 43, 99.CrossRefGoogle Scholar
  77. Goldman, S.A., and F. Nottenbohm. (1983). Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc. Natl. Acad. Sci. U.S.A., 80, 2390.PubMedCrossRefGoogle Scholar
  78. Gottschaldt, K.M., H. Fruhstorfer, M. Schmidt, and I. Kraft. (1982). Thermosensitivity and its possible fine-structural basis in mechanoreceptors in the beak skin of geese. J. Comp. Neurol., 105, 219.CrossRefGoogle Scholar
  79. Gregory, J.E. (1973). An electrophysiological investigation of the receptor apparatus of the duck’s bill. J. Physiol. ( London ), 229, 151.Google Scholar
  80. Gunne, L.M. (1963). Relative adrenaline content in brain tissue. Acta Physiol. Scand., 56, 324.CrossRefGoogle Scholar
  81. Gurney, M.E. (1983). Behavioral correlates of sexual differentiation in the zebra finch song system. Brain Res., 231, 153.CrossRefGoogle Scholar
  82. Haiden, G.J. (1981). The ultrastructure of the avian Golgi tendon organ. Anat. Ree., 200, 153.CrossRefGoogle Scholar
  83. Halata, Z., and B.L. Munger. (1980). The ultrastructure of Ruffini and Herbst corpuscles in the articular capsule of the domestic pigeon. Anat. Ree., 198, 681.CrossRefGoogle Scholar
  84. Hanig, J.P., and J. Seifter. (1968). Amines in the brain of neonate chicks after parenteral injection of biogenic and other amines. Fed. Proc. Fed. Am. Soc. Exp. Biol., 27, 651.Google Scholar
  85. Harvey, A.L., and D. Van Helden. (1981). Acetylcholine receptors in singly and multiply innervated skeletal muscle fibres of the chicken during development. J. Physiol. ( London ), 317, 397.Google Scholar
  86. Hayes, B.P., and K.E. Webster. (1981). Neurons situated outside the isthmo-optic nucleus and projecting to the eye in adult birds. Neurosci. Lett., 26, 107.PubMedCrossRefGoogle Scholar
  87. Hebb, C.O. (1955). Choline acetylase in mammalian and avian sensory systems. Q.J. Exp. Physiol., 40, 176.Google Scholar
  88. Hebb, C.O., and D. Ratkovic. (1964). Choline acetylase in the evolution of the brain in vertebrates. In “Comparative Neurochemistry” (D. Richter, Ed.), Proc. Int. Neurochem. Symp., 5th. Oxford: Pergamon Press, p. 347.Google Scholar
  89. Hehman, K.N., A.R. Vonderahe, and J.J. Peters. (1961). Effect of serotonin on the behavior, electrical activity in the brain, Seizure threshold in the newly hatched chick. Neurology, 11, 1011.PubMedGoogle Scholar
  90. Hendrikson, C.K., and J.E. Vaughn. (1974). Fine structural relationships between neurites and radial glial processes in developing mouse spinal cord. J. Neurocytol., 3, 659.CrossRefGoogle Scholar
  91. Hess, A., G. Pilar, and J.N. Weakly. (1969). Correlation between transmission and structure in avian ciliary ganglion synapses. J. Physiol. ( London ), 202, 339.Google Scholar
  92. Hodos, W., and H.J. Karten. (1966). Brightness and pattern discrimination deficits in the pigeon after lesions of nucleus rotundus. Exp. Brain Res., 2, 151.PubMedCrossRefGoogle Scholar
  93. Hodos, W., H.J. Karten, and J.C. Bonbright. (1973). Visual intensity and pattern discrimination after lesions of the thalamo fugal visual pathway in pigeons. J. Comp. Neurol., 148, 447.PubMedCrossRefGoogle Scholar
  94. Hodos, W., K.A. Macko, and D.I. Sommers. (1982). Interactions between components of the avian visual system. Behav. Brain Res., 5, 157.PubMedCrossRefGoogle Scholar
  95. Holden, A.L., and T.P.S. Powell. (1972). The functional organization of the isthmo-optic nucleus in the pigeon. J. Physiol. ( London ), 223, 419.Google Scholar
  96. Horton, E.W. (1971). Prostaglandins. In “Physiology and Biochemistry of Domestic Fowl,” Vol. 1 ( D.J. Bell and B.M. Freeman, Eds.). New York: Academic Press, p. 589.Google Scholar
  97. Hummel, G. (1979). The fine structure of the bulbus olfactorius of the hen. Acta Histol. Embryol., 8, 289.CrossRefGoogle Scholar
  98. Ignarro, L.J., and F.E. Shideman. (1968). Appearance and concentrations of catecholamines and their biosynthesis in the embryonic and developing chick. J. Pharmacol. Exp. Ther., 159, 38.PubMedGoogle Scholar
  99. James, N.T., and G.A. Meek. (1973). An electron microscopic study of avian muscle spindles. J. Ultrastruct. Res., 43, 193.PubMedCrossRefGoogle Scholar
  100. Jeikouski, H., and D. Drenckhahn. (1981). Evidence for exclusive adrenergic innervation of feather muscles (mm. pennati) in the chicken. Histochemical studies and experiments with 5-hydroxydopamine. Cell Tissue Res., 221, 157.CrossRefGoogle Scholar
  101. Jhaveri, S., and D.K. Morest. (1982). Neuronal architecture in nucleus magnocellularis of the chicken auditory system with observations on nucleus laminaris: A light and electron microscope study. Neuroscience (Oxford), 7, 809.Google Scholar
  102. Jones, A.W., and R. Levi-Montalcini. (1958). Patterns of differentiation of the nerve centers and fiber tracts of the avian cerebral hemispheres. Arch. Ital. Biol., 96, 231.Google Scholar
  103. Jones, D.R., and K. Johansen. (1972). The blood vascular system of birds. In “Avian Biology,” Vol. 2 ( D.S. Farner and J.R. King, Eds.). New York: Academic Press, p. 158.Google Scholar
  104. Jukes, M.G.M. (1971). In “Biochemistry and Physiology of the Domestic Fowl,” Vol. 1 (D.J. Bell and B.M. Freeman, Eds.). New York: Academic Press, p. 171.Google Scholar
  105. Juorio, A.V., and M. Vogt. (1967). Monoamines and their metabolites in the avian brain. J. Physiol. ( London ), 189, 489.Google Scholar
  106. Juorio, A.V., and M. Vogt. (1970). Adrenaline in bird brain. J. Physiol. ( London ), 209, 757.Google Scholar
  107. Karten, H.J. (1963). Ascending pathways from the spinal cord in the pigeon (Columba livia). Proc. Int. Cong. Zool., 16th, 2, 23.Google Scholar
  108. Karten, H.J. (1966). Efferent projections of the nucleus mesencephalicus lateralis, pars dorsalis (MLD) in the pigeon (Columba livia). Anat. Ree., 154, 365.Google Scholar
  109. Karten, H.J. (1967a). The organization of the ascending auditory pathway in the pigeon (Columba livia) 1. Diencephalic projections of the inferior colliculus (nucleus mesencephalicus lateralis pars dorsalis). Brain Res., 6, 409.CrossRefGoogle Scholar
  110. Karten, H.J. (1967b). Telencephalic projections of the nucleus ovoidalis in the pigeon (Columba livia). Anat. Ree., 157, 268.Google Scholar
  111. Karten, H.J. (1968). The ascending auditory pathway in the pigeon. II. Telencephalic projections of the nucleus ovoidalis thalami. Brain Res., 11, 134.PubMedCrossRefGoogle Scholar
  112. Karten, H.J. (1969). The organization of the avian telencephalon and some speculations on the phylogeny of amniote telencephalon. Ann. N.Y. Acad. Sci., 167, 164.CrossRefGoogle Scholar
  113. Karten, H.J., and A.M. Revzin. (1966). The afferent connections of the nucleus rotundus in the pigeon. Brain Res., 2, 368.PubMedCrossRefGoogle Scholar
  114. Karten, H.J., and W. Hodos. (1967). “A Stereotaxic Atlas of the Brain of the Pigeon (Columba livia).” Baltimore: Johns Hopkins Press.Google Scholar
  115. Karten, H.J., W. Hodos, W.J.H. Nauta, and A.M. Revzin. (1973). Neural connections of the “Visual Wulst” of the avian telencephalon. Experimental studies in the pigeon (Columba livia) and owl (Speotyto cunicularia). J. Comp. Neurol., 150, 253.PubMedCrossRefGoogle Scholar
  116. Katori, M. (1962). The development of the spontaneous electrical activity in the brain of a chick embryo and the effects of several drugs on it. Jpn. J. Pharmacol., 12, 9.CrossRefGoogle Scholar
  117. King, A.S., and V. Molony. (1971). The anatomy of respiration. In “Physiology and Biochemistry of the Domestic Fowl” ( D.J. Bell and B.M. Freeman, Eds.). New York: Academic Press, p. 93.Google Scholar
  118. Kirsch, M., R.B. Coles, and J.H. Leppelsack. (1980). Unit recordings from a new auditory area in the frontal neostriatum of the awake starling (Sturnus vulgaris). Exp. Brain Res., 38, 375.PubMedCrossRefGoogle Scholar
  119. Kitt, C.A., and S.E. Brauth. (1982). A paleostriatal-thalamic-telencephalic path in pigeons. Neuroscience (Oxford), 7, 2735.Google Scholar
  120. Knowlton, V.Y. (1964). Abnormal differentiation of embryonic avian brain centres associated with unilateral anophthalmia. Acta Anat., 58, 222.PubMedCrossRefGoogle Scholar
  121. Koenig, H.L., L. DiGiamberadino, and G. Bennett. (1973). Renewal of proteins and glycoproteins of synaptic constituents by means of axonal transport. Brain Res., 62, 413.PubMedCrossRefGoogle Scholar
  122. Koley, J., J. SenGupta, S.P. Sarkar, and B.N. Koley. (1979). Sympathetic afferents from the avian abdomen. Int. Res. Comm. Symp. Med. Sci. Lib. Compend., 7, 245.Google Scholar
  123. Kovacs, S.A., G.C. Wilson, andJ.K. Kovach. (1981). Normal EEG of the restrained twenty-four-hour-old Japanese quail (Coturnix coturnix japonica). Poult. Sci., 60, 243.PubMedGoogle Scholar
  124. Kramer, S.2., and J. Seifter. (1966). The effects of GABA and biogenic amines on behavior and brain electrical activity in chicks. Life Sci., 5, 527.CrossRefGoogle Scholar
  125. Kuenzel, W.J., and A. van Tienhoven. (1982). Nomenclature and location of avian hypothalamic nuclei and associated circumventricular organs. J. Comp. Neurol., 206, 293.PubMedCrossRefGoogle Scholar
  126. Kuriyama, K., B. Sisken, J. Ito, D.G. Simonsen, B. Haber, and E. Roberts. (1968). The y-aminobutyric acid system in the developing chick embryo cerebellum. Brain Res., 11, 412.PubMedCrossRefGoogle Scholar
  127. Lajtha, A. (1957). The development of the blood-brain barrier. J. Neurochem., 1, 216.PubMedCrossRefGoogle Scholar
  128. Lasjewski, R.C. (1972). Respiratory function in birds. In “Avian Biology,” Vol. 2 ( D.S. Farner andJ.R. King, Eds.). New York: Academic Press, p. 288.Google Scholar
  129. Leitner, L.-M., and M. Roumy. (1974a). Mechanosensitive units in the upper bill and in the tongue of the domestic duck. Pfleugers Arch., 346, 141.CrossRefGoogle Scholar
  130. Leitner, L.-M., and M. Roumy. (1974b). Thermosensitive units in tongue and in the skin of the duck’s bill. Pfleugers Arch., 346, 151.CrossRefGoogle Scholar
  131. Levi-Montalcini, R. (1950). The origin and development of the visceral system in the spinal cord of the chick. J. Morphol., 86, 253.CrossRefGoogle Scholar
  132. Lubinska, L. (1975). On axoplasmic flow. Int. Rev. Neuro-biol., 17, 241.CrossRefGoogle Scholar
  133. Maier, A. and E. Eldred. (1971). Comparisons in the structure of avian muscle spindles. J. Comp. Neurol., 143, 25.PubMedCrossRefGoogle Scholar
  134. Malinovski, L., and L. Pac. (1980). Ultrastructure of the Herbst corpuscle from beak skin of the pigeon. Z. Mikrosk. Anat. Forsch., 94, 292.Google Scholar
  135. Manni, E., G.M. Azzena, and R. Bortolani. (1965). Jaw muscle proprioception and mesencephalic trigeminal cells in birds. Exp. Neurol., 12, 320.PubMedCrossRefGoogle Scholar
  136. Marko, P., and M. Cuenod. (1973). Contribution of the nerve cell body to renewal of axonal and synaptic glycoproteins in the pigeon visual system. Brain Res., 62, 419.PubMedCrossRefGoogle Scholar
  137. Martin. A.H. (1979). A cytoarchitectonic scheme for the spinal cord of the domestic fowl (Gallus gallus domesticus): Lumbar region. Acta Morphol. Neerl.-Scand., 17, 105.PubMedGoogle Scholar
  138. Martin, A.R., and G. Pilar. (1963a). Dual mode of synaptic transmission in the avian ciliary ganglion. J. Physiol. ( London ), 168, 443.Google Scholar
  139. Martin, A.R., and G. Pilar. (1963b). Transmission through the ciliary ganglion of the chick. J. Physiol. ( London ), 168, 464.Google Scholar
  140. Martin, A.R., and G. Pilar. (1964). An analysis of electrical coupling at synapses in the avian ciliary ganglion. J. Physiol. ( London ), 171, 454.Google Scholar
  141. McCasland,J.S., and M. Konishi. (1981). Interaction between auditory and motor activities in an avian song control nucleus. Proc. Natl. Acad. Sci. U.S.A., 78, 7815.PubMedCrossRefGoogle Scholar
  142. McGill, J.J., T.P.S. Powell, and W.M. Cowan. (1966). The retinal representation upon the optic tectum and isthmo-optic nucleus in the pigeon. J. Anat., 100, 5.PubMedGoogle Scholar
  143. Miceli, D., and J. Reperant. (1982). Thalamo-hyperstriatal projections in the pigeon (Columba livia) as demonstrated by retrograde double labeling with fluorescent tracers. Brain Res., 245, 365.PubMedCrossRefGoogle Scholar
  144. Morales, R., and D. Duncan. (1975). Specialized contacts of astrocytes with astrocytes and with other cell types in the spinal cord of the cat. Anat. Rec., 182, 255.PubMedCrossRefGoogle Scholar
  145. Narayanan, C.H., and Y. Narayanan. (1976). An experimental inquiry into the central source of preganglionic fibers to the chick ciliary ganglion. J. Comp. Neurol., 166, 101.PubMedCrossRefGoogle Scholar
  146. Newman, J.D. (1972). Midbrain control of vocalization in redwinged blackbirds (Agelaius phoeniceus). Brain Res., 48, 227.PubMedCrossRefGoogle Scholar
  147. Nistico, T. (1980). Relations between dopaminergic and gamma amino butyric acid-ergic mechanisms in avian brain. Pharmacol. Res. Commun., 12, 507.PubMedCrossRefGoogle Scholar
  148. Noden, D.M. (1980). Somatotopic and functional organization of the avian trigeminal ganglion. Horseradish peroxidase analysis in the hatchling chick. J. Comp. Neurol., 190, 405.PubMedCrossRefGoogle Scholar
  149. Noden, D.M. (1983a). The role of the neural crest in patterning of avian cranial skeletal, connective and muscle tissues. Dev. Biol., 96, 144.CrossRefGoogle Scholar
  150. Noden, D.M. (1983b). The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. Am. J. Anat., 168, 257.CrossRefGoogle Scholar
  151. Nottenbohm, F. (1980a). Brain pathways for vocal learning in birds: A review of the first 10 years. In “Progress in Psychobiology and Physiological Psychology,” Vol. 9 ( J.M.S. Sprague and A.N.E. Epstein, Eds.). New York: Academic Press, p. 84.Google Scholar
  152. Nottenbohm, F. (1980b). Testosterone triggers growth of brain vocal control nuclei in adult female canaries. Brain Res., 189, 429.CrossRefGoogle Scholar
  153. Nottenbohm, F., D.B. Kelley, and J.A. Paton. (1982). Connections of vocal control nuclei in the canary telencephalon. J. Comp. Neurol., 207, 344.CrossRefGoogle Scholar
  154. Ohmori, Y., T. Watanabe, and T. Fujioka. (1982). Localization of the motoneurons innervating the forelimb muscles in the spinal cord of the domestic fowl. Anat. Histol. Embryol., 11, 124.PubMedCrossRefGoogle Scholar
  155. Ookawa, T. (1972a). Polygraphic recording during adult hen hypnosis. Poult. Sci., 51, 853.Google Scholar
  156. Ookawa, T. (1972b). Avian wakefulness and sleep on the basis of recent electroencephalographic observations. Poult. Sci., 51, 1565.Google Scholar
  157. Ookawa, T. (1973a). Notes of abnormal electroencephalograms in the telencephalon of the chicken and pigeon. Poult. Sci., 52, 182.Google Scholar
  158. Ookawa, T. (1973b). Effect of strychnine on the electroencephalogram recorded from the Wulst of curarized adult chickens. Poult. Sci., 52, 1090.Google Scholar
  159. Ookawa, T. (1973c). Effect of intravenously administered strychnine on the EEG recorded from the deep structure of the adult chicken telencephalon. Poults. Sci., 52, 806.Google Scholar
  160. Ookawa, T. (1973d). Effect of some convulsant drugs on the electroencephalogram recorded from the Wulst of the adult chicken and pigeon under curarized conditions. Poult. Sci., 52, 1704.Google Scholar
  161. Ookawa, T. (1977). Behavioral and electroencephalographic manifestations of avian epilepsy: A review of the literature. Poult. Sci., 56, 773.PubMedGoogle Scholar
  162. Ookawa, T., and J. Gotoh. (1965). Electroencephalogram of the chicken recorded from the skull under various conditions. J. Comp. Neurol., 124, 1.PubMedCrossRefGoogle Scholar
  163. Ookawa, T., and K. Takagi. (1968). Electroencephalograms of free behavioral chicks at various developmental ages. Jpn.J. Physiol., 18, 87.CrossRefGoogle Scholar
  164. Ookawa, T.,J. Gotoh, T. Kumazawa, and K. Takagi. (1962). Electroencephalogram of chickens. Proc. Meeting Jpn. Soc. Vet. Sci., 53rd, Jpn. J. Vet. Sci., 24 (Suppl.), 438.Google Scholar
  165. Oscarsson, O., I. Rosen, and N. Uddenberg. (1963). Organization of the ascending tracts in the spinal cord of the duck. Acta Physiol. Scand., 59, 143.PubMedCrossRefGoogle Scholar
  166. Pac, L. (1982). Contribution to the study of Merkel corpuscles in the domestic fowl. Folia Morphol. ( Warsaw ), 30, 340.Google Scholar
  167. Parks, T.N. (1981). Morphology of axosomatic endings in an avian cochlear nucleus: Nucleus magnocellularis of the chicken. J. Comp. Neurol., 203, 425.PubMedCrossRefGoogle Scholar
  168. Parks, T.N., P. Collins, and J.W. Conlee. (1983). Morphology and origin of axonal endings in the nucleus laminaris of the chicken. J. Comp. Neurol., 214, 32.PubMedCrossRefGoogle Scholar
  169. Pearson, R. (1972). “The Avian Brain.” New York: Academic Press.Google Scholar
  170. Peinone, S.M. and L.S. Daneo. (1978). Ultrastructural observations on avian muscle spindles: Evidence of three intrafusal fibre types. Riv. Biol., 71, 3.Google Scholar
  171. Peters, J.J., and E.J. Hilgeford. (1971). EEG episodes of rhythmic waves and Scizure patterns following hypothermic hypoxia in the chick embryo. Electroencephalogr. Clin. Neurophysiol., 31, 631.CrossRefGoogle Scholar
  172. Peters, J.J., C.J. Cusick, and A.R. Vonderahe. (1961). Electrical studies of hypothermic effects on the eye, cerebrum and skeletal muscles of the developing chick. J. Exp. Zool., 148, 31.PubMedCrossRefGoogle Scholar
  173. Peters, J.J., A.R. Vonderahe, and J.J. McDonough. (1964). Electrical changes in brain and eye of the developing chick during hyperthermia. Am. J. Physiol., 207, 260.PubMedGoogle Scholar
  174. Peters, J.J., T.P. Bright, and A.R. Vonderahe. (1968). Electroencephalographic studies of survival following hypothermic hypoxia in developing chicks. J. Exp. Zool., 167, 179.PubMedCrossRefGoogle Scholar
  175. Peters,J.J., A.R. Vonderahe, and E.J. Hilgeford. (1969). Electroencephalographic episodes of 1 to 7 per second rhythmic waves following hypothermic hypoxia in developing chicks. J. Exp. Zool., 170, 427.PubMedCrossRefGoogle Scholar
  176. Pohorecky, L.A., M.J. Zigmond, H.J. Karten, and R.J. Wurtman. (1968). Phenylethanolamine-N-methyltransferase activity (PNMT) in mammalian, avian and reptilian brain. Fed. Proc. Fed. Am.’ Soc. Exp. Biol., 27, 239.Google Scholar
  177. Pomeroy, L.R., and A.J. Welch. (1967). Computer-assisted electroencephalograph analysis of chick pyridoxine deficiency states. Technical Report 36, The University of Texas, Austin, p. 1.Google Scholar
  178. Potash, L.M. (1970). Neuroanatomical regions relevant to production and analysis of vocalization within the avian torus semicircularis. Experientia, 26, 1104.PubMedCrossRefGoogle Scholar
  179. Powell, T.P.S., and W.M. Cowan. (1961). The thalamic projection upon the telencephalon in the pigeon (Columba livia). J. Anat., 95, 78.PubMedGoogle Scholar
  180. Putkonen, P.T.S. (1967). Electrical stimulation of the avian brain. Ann. Acad. Sci. Fenn., Ser. A5, 130, 1.Google Scholar
  181. Reiner, A., N.C. Brecha, and H.J. Karten. (1982). Basal ganglia pathways to the tectum. The afferent and efferent connections of the lateral spiriform nucleus of the pigeon. J. Comp. Neurol., 208, 16.PubMedCrossRefGoogle Scholar
  182. Reiner, A., H.J. Karten, and N.C. Brecha. (1982). Enkephalin-mediated basal ganglia influences over the optic tectum: Immunohistochemistry of the tectum and lateral spiriform nucleus in the pigeon. J. Comp. Neurol., 208, 37.PubMedCrossRefGoogle Scholar
  183. Reiner, A., H.J. Karten, P.D.R. Gamlin, and J.T. Erichsen. (1983). Parasympathetic ocular control. Functional subdivision and circuitry of the avian nucleus of Edinger-Westphal. Trends Neurosci., 6, 140.CrossRefGoogle Scholar
  184. Revzin, A.M., and H. Karten. (1967). Rostral projections of the optic tectum and the nucleus rotundus in the pigeon. Brain Res., 3, 264.CrossRefGoogle Scholar
  185. Ryan, S.M., A.P. Arnold, and R.P. Elde. (1981). Enkephalin-like immunoreactivity in vocal control regions of the zebra finch brain. Brain Res., 229, 236.PubMedCrossRefGoogle Scholar
  186. Rylander, M.K., and J. Snow. (1982). Cytoarchitectonic of some nuclei in the avian auditory and visual systems. Anat. Anz., 151, 421.PubMedGoogle Scholar
  187. Saffrey, M.J.J.M. Polak, and G. Burnstock. (1982). Distribution of vasoactive intestinal polypeptide-, substance P-, enkephalin- and neurotensin-like immunoreactive nerves in the chicken gut during development. Neuroscience, 7, 279.PubMedCrossRefGoogle Scholar
  188. Sammartino, U. (1933). Sugli animali a midolla spinale accrociato. Arch. Farmacol. Sper., 55, 219.Google Scholar
  189. Sansone, F.M. (1977). The craniocaudal extent of the glycogen body in the domestic chicken. J. Morphol., 153, 87.PubMedCrossRefGoogle Scholar
  190. Sansone, F.M. (1980). An ultrastructural study of the craniocaudal continuation of the glycogen body. J. Morphol., 163, 45.PubMedCrossRefGoogle Scholar
  191. Sanson, F.M. and F.J. Lebeda. (1976). A brachial glycogen body in the spinal cord of the domestic chicken. J. Morphol. 148, 23.CrossRefGoogle Scholar
  192. Sato, H., A. Ohga, and Y. Nakazato. (1970). The excitatory and inhibitory innervation of the stomachs of the domestic fowl. Jpn. J. Pharmacol., 20, 382.PubMedCrossRefGoogle Scholar
  193. Scholes, N.W., and E. Roberts. (1964). Pharmacological studies of the optic system of the chick: Effect of y-aminobutyric acid and pentobarbital. Biochem. Pharmacol., 13, 1319.PubMedCrossRefGoogle Scholar
  194. Seller, T.J. (1980). Midbrain regions involved in call production in Java sparrows. Behav. Brain Res., 1, 257.PubMedCrossRefGoogle Scholar
  195. Sheff, A.G., and L.L. Tureen. (1962). EEG studies of normal and encephalomalacia chicks. Proc. Soc. Exp. Biol. Med., 111, 407.PubMedGoogle Scholar
  196. Shiosaka, S., K. Takatsuki, S. Inagaki, M. Sakanaka, H. Takaji, E. Senba, T. Matsugaki, and M. Tohyama. (1981). Topographic atlas of somatostatin-containing neuron system. I. Telencephalon and diencephalon. J. Comp. Neurol., 202, 103.PubMedCrossRefGoogle Scholar
  197. Showers, M.C. (1982). Telencephalon of birds. In “Comparative Correlative Neuroanatomy of the Vertebrate Telencephalon” ( E.C. Crosby and H.N. Schnitzlein, Eds.). New York: Macmillan, p. 218.Google Scholar
  198. Sivak, J.G. (1983). Ultrastructure of the avian iris dilator muscle. Rev. Can. Biol. Exp., 42, 57.PubMedGoogle Scholar
  199. Skoglund, C.R. (1960). Properties of pacinian corpuscles of ulnar and tibial location in cat and fowl. Acta Physiol. Scand., 50, 385.CrossRefGoogle Scholar
  200. Snell, R.S. (1975). “Clinical Embryology for Medical Students,” 2nd ed. Boston: Little, Brown.Google Scholar
  201. Spooner, C.E., and W.D. Winters. (1966a). Neuropharmaco- logical profile of the young chick. Int. J. Neuropharmacol., 5, 217.CrossRefGoogle Scholar
  202. Spooner, C.E., and W.D. Winters. (1966b). Distribution of monoamines and regional uptake of DL-norepinephrine-7-H3 and dopamine-1-H3 in the avian brain. Pharmacologist, 8, 189.Google Scholar
  203. Spooner, C.E., and W.D. Winters. (1967). Evoked responses during spontaneous and monoamine-induced states of wakefulness. Brain Res., 4, 189.PubMedCrossRefGoogle Scholar
  204. Spooner, C.E., and W.D. Winters, and A.J. Mandell. (1966). DL-Norepinephrine-7-H3 uptake, water content and thiocyanate space in the brain during maturation. Fed. Proc. Fed. Am. Soc. Exp. Biol., 25, 451.Google Scholar
  205. Stewart, P.A., and M.J. Wiley. (1981). Structural and histo-chemical features of the avian blood-brain barrier. J. Comp. Neurol., 202, 157.PubMedCrossRefGoogle Scholar
  206. Straznicky, C., and D. Tay. (1983). The localization of motoneuron pools innervating wing muscles in the chick. Acta Embryol., 166, 209.CrossRefGoogle Scholar
  207. Strutz, J., and C.L. Schmidt. (1982). Acoustic and vestibular efferent neurons in the chicken (Gallus domesticas). A horseradish peroxidase study. Acta Otolaryngol. ( Stockh. ), 94, 45.CrossRefGoogle Scholar
  208. Sugihara, K., and J. Gotoh. (1973). Depth electroencephalograms of chickens in wakefulness and sleep. Jpn. J. Physiol., 23, 371.PubMedCrossRefGoogle Scholar
  209. Swank, R.L., and H.H. Jasper. (1942). Electroencephalograms of thiamine-deficient pigeons. Arch. Neurol. Psychiatry, 47, 821.Google Scholar
  210. Takatsuji, K., H. Ito, and H. Masai. (1983). Ipsilateral retinal projections in the Japanese quail, Coturnix coturnix japonica. Brain Res. Bull., 10, 53.PubMedCrossRefGoogle Scholar
  211. ten Cate, J. (1960). Locomotor movements in the spinal pigeon. J. Exp. Biol., 37, 609.Google Scholar
  212. Tindall, A.R. (1979). The innervation of the hind gut of the domestic fowl. Br. Poult. Sci., 20, 473.PubMedCrossRefGoogle Scholar
  213. Toggenburger, G., D. Felix, M. Cuenod, and H. Henke. (1982). In vitro release of endogenous beta-alanine, GAB A, and glutamate, and electrophysiological effect of beat-alanine in pigeon optic tectum. J. Neurochem., 39, 176.PubMedCrossRefGoogle Scholar
  214. Tokaji, E., and R.W. Gerard. (1939). Avitaminosis B, and pigeon brain potentials. Proc. Soc. Exp. Biol. Med., 41, 653.Google Scholar
  215. Tsukada, Y., K. Uemura, S. Hirano, and Y. Nagata. (1962). In “Comparative Neurochemistry” (D. Richter, Ed.). Proc. 5th Int. Neurochem. Symp., 5th. Oxford: Pergamon Press, p. 179.Google Scholar
  216. Tuge, H., Y. Kanayama, and C.H. Yueh. (1960). Comparative studies on the development of the EEG. Jpn. J. Physiol., 10, 211.PubMedCrossRefGoogle Scholar
  217. Uehara, M., T. Veshima, and N. Kudo. (1982). The fine structure of glycogen-containing cells in the chicken spinal cord. Jpn. J. Vet. Res., 30, 1.PubMedGoogle Scholar
  218. van Tienhoven, A., and L.P. Juhász. (1962). The chicken telencephalon, diencephalon and mesencephalon in stero- taxic coordinates. J. Comp. Neurol., 118, 185.CrossRefGoogle Scholar
  219. Waelsch, H. (1955). In “Biochemistry of the Developing Nervous System” (H. Waeisch, Ed.). New York: Academic Press, p. 187.Google Scholar
  220. Watanabe, T. (1960). On the peripheral course of the vagus nerve in the fowl. Jpn. J. Vet. Sci., 22, 145.CrossRefGoogle Scholar
  221. Watanabe, T. (1964). Peripheral courses of the hypoglossal, accessory and glossopharayngeal nerves. Jpn. J. Vet. Sci., 26, 249.CrossRefGoogle Scholar
  222. Watanabe, T., and M. Yasuda. (1968). Peripheral course of the olfactory nerve in the fowl. J. Vet. Sci., 30, 275.CrossRefGoogle Scholar
  223. Watanabe, T., and M. Yasuda. (1970). Peripheral course of the trigeminal nerve in the fowl. Jpn. J. Vet. Sci., 32, 43.CrossRefGoogle Scholar
  224. Watanabe, T., G. Isomura, and M. Yasuda. (1967). Distribution of nerves in the oculomotor and ciliary muscles. Jpn. J. Vet. Sci., 29, 151.CrossRefGoogle Scholar
  225. Watanabe, M., H. Ito, and H. Masai. (1983). Cytoarchitecture and visual receptive neurons in the Wulst of the Japanese quail (Coturnix coturnix japonica). J. Comp. Neurol., 213, 188.PubMedCrossRefGoogle Scholar
  226. Whitehead, M.C., and D.K. Morest. (1981). Dual populations of efferent and afferent cochlear axons in the chicken (Gallus gallus). Neuroscience, 6, 2351.PubMedCrossRefGoogle Scholar
  227. Whitlock, D.G. (1952). A neurohistological and neurophysiological study of afferent fiber tracts and receptive areas of the avian cerebellum. J. Comp. Neurol., 97, 567.PubMedCrossRefGoogle Scholar
  228. Wold, J.E. (1979). The vestibular nuclei in the domestic hen (Gallus domesticus). VII. Afferents from the spinal cord. Arch. Ital. Biol., 117, 30.PubMedGoogle Scholar
  229. Wold, J.E. (1981). The vestibular nuclei in the domestic hen (Gallus domesticus): VI. Afferents from the cerebellum. J. Comp. Neurol., 201, 319.PubMedCrossRefGoogle Scholar
  230. Yamada, S., and S.I. Mikami. (1982). Immunohistochemical localization of vasoactive intestinal polypeptide-containing neurons in the hypothalamus of the Japanese quail, Coturnix coturnix. Cell Tissue Res., 226, 13.PubMedGoogle Scholar
  231. Yasuda, M. (1960). On the nervous supply of the thoracic limb in the fowl. Jpn. J. Vet. Sci., 22, 89.CrossRefGoogle Scholar
  232. Yasuda, M. (1961). On the nervous supply of the hind limb of the fowl. Jpn. J. Vet. Sci., 23, 145.CrossRefGoogle Scholar
  233. Zaretsky, M.D. (1978). A new auditory area of the song bird forebrain: A connection between auditory and song control centers. Exp. Brain Res., 32, 267.PubMedCrossRefGoogle Scholar
  234. Zecha, A. (1961). Bezit een vogel een fasciculus rubro-bulbo-spinalis? Ned. Tijdschr. Geneeskd., 105, 2373.Google Scholar
  235. Zecha, A. (1962). The “pyramidal tract” and other telen- cephalic efferents in birds. Acta Morph. Neerl.-Scand., 5, 194.Google Scholar
  236. Zeigler, H.P. (1963). Effects of endbrain lesions upon visual discrimination learning in pigeons. J. Comp. Neurol., 120, 161.PubMedCrossRefGoogle Scholar
  237. Zeigler, H.P., and H.J. Karten. (1973). Brain mechanisms and feeding behaviour in the pigeon (Columba livia). I. Quintofrontal structures. J. Comp. Neurol., 152, 59.PubMedCrossRefGoogle Scholar
  238. Ziller, C., and J. Smith. (1982). Migration and differentiation of neural crest cells and their derivitives: In vivo and in vitro studies on the early development of the avian peripheral nervous system. Reprod. Nutr. Dev., 22, 153.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1986

Authors and Affiliations

  • C. A. Benzo

There are no affiliations available

Personalised recommendations