Skip to main content

Nervous System

  • Chapter

Abstract

The vertebrate nervous system is responsible both for maintaining contact between the animal and its external and internal environments and for the proper adjustments of the animal to the changes in these environments. The animal maintains contact with the external environment through sensory receptors at the surface of the body. The internal environment is monitored by receptors located in muscles, joints, ligaments, and visceral organs. Basically, adjustments to changes in either environment are brought about by reflex arcs consisting of afferent (sensory) neurons, centers within the spinal cord or brain, and efferent (motor) neurons. Afferent neurons carry sensory information to the central nervous system, and efferent neurons convey motor impulses from the central nervous system to various effector mechanisms, such as muscles and glands. The nervous system works in harmony with the endocrine system to coordinate the many complex activities involved in normal body functions. The nervous system is the rapid coordinator in response to a given stimulus, whereas the endocrine system is more deliberate in its action and is brought into play for conditions that require a more intense or prolonged response.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdalla, A.B., and A.S. Kind. (1979). The afferent and efferent myelinated fibers of the avian cervical vagus. J. Anat., 128, 135.

    PubMed  CAS  Google Scholar 

  • Adal, M.N. (1973). The fine structure of the intrafusal muscle fibres of muscle spindles in the domestic fowl. J. Anat., 115, 407.

    PubMed  CAS  Google Scholar 

  • Adal, M.N., and S.B. Chew-Cheng. (1980). The sensory ending of duck muscle spindles. J. Anat., 131, 657.

    PubMed  CAS  Google Scholar 

  • Åkerman, B. (1966). Behavioral effects of electrical stimulation in the forebrain of the pigeon. II: Protective behavior. Behaviour, 26, 339.

    Article  PubMed  Google Scholar 

  • Akester, A.R., B. Akester, and S.P. Mann. (1969). Catecholamines in the avian heart. J. Anat., 104, 591.

    PubMed  CAS  Google Scholar 

  • Ali, H.A., and J. McLelland. (1978). Avian enteric nerve plexuses. A histochemical study. Cell Tissue Res., 189, 537.

    Article  PubMed  CAS  Google Scholar 

  • Aprison, M.H., and R. Takahaski. (1965). Biochemistry of the avian central nervous system: II. 5-Hydroxytryptamine, acetylcholine, 3,4, dihydroxyphenylethylamine and norepinephrine in several discrete areas of the pigeon brain. J. Neurochem., 12, 221.

    Article  PubMed  CAS  Google Scholar 

  • Aprison, M.H., R. Takahaski, and T.L. Folkerth. (1964). Biochemistry of the avian central nervous system: I. 5-Hydroxytryptophan decarboxylase, monoamine oxidase and choline acetylase-acetylcholinesterase systems in several discrete areas of the pigeon brain. J. Neurochem., 11, 341.

    Article  PubMed  CAS  Google Scholar 

  • Arends, J.J., and J.L. Dubbeldam. (1982). Exteroceptive and proprioceptive afferents of the trigeminal and facial motor nuclei in the mallard (Anas platyrhynchos). J. Comp. Neurol., 209, 313.

    Article  PubMed  CAS  Google Scholar 

  • Ariëns-Kappers, C.U., G.C. Huber, and E.C. Crosby. (1936). “The Comparative Anatomy of the Nervous System of Vertebrates Including Man,” Vols. 1 and 2. New York: Macmillan.

    Google Scholar 

  • Banks, P., and D. Mayor. (1972). Intra-axonal transport in noradrenergic neurons in the sympathetic nervous system. In “Neurotransmitters and Metabolic Regulation,” Vol. 36 ( R.M.S. Smellie, Ed.). Biochemical Society Symposium, p. 133.

    Google Scholar 

  • Barr, M.L., and J.A. Kiernan. (1983). “The Human Nervous System,” 4th ed. Philadelphia: Harper and Row.

    Google Scholar 

  • Bennett, T. (1974). The peripheral and autonomic nervous systems. In “Avian Biology,” Vol. 4 ( D.S. Farner and J.R. King, Eds.). New York: Academic Press, p. 1.

    Google Scholar 

  • Bennett, T., and T. Malmfors. (1970). The adrenergic nervous system of the domestic fowl (Gallus domesticus L.). Z. Zellforsch. Mikrosk. Anat., 106, 22.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, T., G. Burnstock, J.L.S. Cobb, and T. Malmfors. (1970). An ultrastructural and histochemical study of the short-term effects of 6-hydroxydopamine on adrenergic nerves in the domestic fowl. Br. J. Pharmacol., 38, 802.

    PubMed  CAS  Google Scholar 

  • Benzo, C.A. (1983). The hypothalamus and blood glucose regulation. Life Sci., 32, 2509.

    Article  PubMed  CAS  Google Scholar 

  • Benzo, C.A., and L.D. DeGennaro. (1974). Glycogen synthase and phosphorylase in the developing chick glycogen body. J. Exp. Zool., 188, 375.

    Article  PubMed  CAS  Google Scholar 

  • Benzo, C.A., and L.D. DeGennaro. (1981). Glycogen metabolism in the developing accessory lobes of Lachi in the nerve cord of the chick: Metabolic correlations with the avian glycogen body. J. Exp. Zool., 215, 47.

    Article  PubMed  CAS  Google Scholar 

  • Benzo, C.A., and L.D. DeGennaro. (1983). An hypothesis of function for the avian glycogen body: A novel role for glycogen in the central nervous system. Med. Hypotheses, 10, 69.

    Article  PubMed  CAS  Google Scholar 

  • Benzo, C.A., L.D. DeGennaro, and S.B. Stearns. (1975). Glycogen metabolism in the developing chick glycogen body: Functional significance of the direct oxidative pathway. J. Exp. Zool., 193, 161.

    Article  PubMed  CAS  Google Scholar 

  • Berk, M.L., and A.B. Butler. (1981). Efferent projections of the medial preoptic nucleus and medial hypothalamus in the pigeon. J. Comp. Neurol., 203, 379.

    Article  PubMed  CAS  Google Scholar 

  • Berkhoudt, H., B.G. Klein, and H.P. Zeigler. (1982). Afferents to the trigeminal and facial motor nuclei in the pigeon (Columba livia): Central connections of jaw motoneurons. J. Comp. Neurol., 209, 301.

    Article  PubMed  CAS  Google Scholar 

  • Bolton, T.B. (1971a). The structure of the nervous system. In “Physiology and Biochemistry of the Domestic Fowl” ( D.J. Bell and B.M. Freeman, Eds.). New York: Academic Press, p. 641.

    Google Scholar 

  • Bolton, T.B. (1971b). The physiology of the nervous system. In “Physiology and Biochemistry of the Domestic Fowl” ( D.J. Bell and B.M. Freeman, Eds.). New York: Academic Press, p. 675.

    Google Scholar 

  • Bolton, T.B. (1976). The Nervous System. In “Avian Physiology,” 3rd ed. ( P.D. Sturkie, Ed.). New York: Springer-Verlag, p. 4.

    Google Scholar 

  • Bolton, T.B., and W.C. Bowman. (1969). Adrenoreceptors in the cardiovascular system of the domestic fowl. Eur. J. Pharmacol., 5, 121.

    Article  PubMed  CAS  Google Scholar 

  • Bondy, S.C., and J.L. Purdy. (1977). Putative neurotransmitters of the avian visual pathway. Brain Res., 119, 417.

    Article  PubMed  CAS  Google Scholar 

  • Boord, R.L. (1969). The anatomy of the avian auditory system. Ann. N.Y. Acad. Sci., 167, 186.

    Article  Google Scholar 

  • Bottjer, S.W., and A.P. Arnold. (1982). Afferent neurons in the hypoglossal nerve of the zebra finch (Poephila guttata): Localization with horseradish peroxidase. J. Comp. Neurol., 210, 190.

    Article  PubMed  CAS  Google Scholar 

  • Brecha, N.C., and H.J. Karten. (1981). Organization of the avian accessory optic system. Ann. N.Y. Acad. Sci., 374, 215.

    Article  PubMed  CAS  Google Scholar 

  • Brown, J.L. (1969). The control of avian vocalization by the central nervous system. In “Bird Vocalizations” ( R.A. Hinde, Ed.). Cambridge: Cambridge University Press, p. 79.

    Google Scholar 

  • Brown, J.L. (1971). An exploration study of vocalization areas in the brain of the red winged blackbird (Angelaius phoeniceus). Behavior, 39, 91.

    Article  CAS  Google Scholar 

  • Brown, C.M., V. Molony, A.S. King, and R.D. Cook. (1972). Fibre size and conduction velocity in the vagus of the domestic fowl (Gallus domesticus). Acta Anat., 83, 451.

    Article  PubMed  CAS  Google Scholar 

  • Bulat, M., and Z. Supek. (1968). Passage of 5-hydroxytryptamine through the blood-brain barrier, its metabolism in the brain and elimination of 5-hydroxyindolacetic acid from the brain tissue. J. Neurochem., 15, 383.

    Article  PubMed  CAS  Google Scholar 

  • Burack, W.R., and A. Badger. (1964). Sequential appearance of dopa decarboxylase, dopamine β-oxidase and norepinephrine N-methyltransferase activities in the embryonic chick. Fed. Proc. Fed. Am. Soc. Exp. Biol., 23, 561.

    Google Scholar 

  • Burger, R.E., and M.R. Fedde. (1964). Physiological and pharmacological factors which influence the incidence of acute pulmonary alterations following vagotomy in the domestic cock. Poult. Sci., 43, 384.

    Google Scholar 

  • Cabot, J.B., and D.H. Cohen. (1977). Avian sympathetic cardiac fibers and their cells or origin: Anatomical and electro-physical characteristics. Brain Res., 131, 73.

    Article  PubMed  CAS  Google Scholar 

  • Callingham, B.A., and D.F. Sharman (1970). The concentration of catecholamines in the brain of the domestic fowl (Gallus domesticus). Br. J. Pharmacol., 40, 1.

    PubMed  CAS  Google Scholar 

  • Cantino, D., and E. Mugnaini. (1975). The structural basis for electrotonic coupling in the avian ciliary ganglion. A study with thin sectioning and freeze-fracturing. J. Neurocytol., 4, 505.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, F.G., and R.M. Bergland. (1957). Excitation and conduction in immature nerve fibres of the developing chick. Am. J. Physiol., 190, 371.

    PubMed  CAS  Google Scholar 

  • Chaplin, J.P., and A. Demers. (1978). “Primer of Neurology and Neurophysiology.” New York: John Wiley and Sons.

    Google Scholar 

  • Clearwaters, K. (1954). Regeneration of the spinal cord of the chick. J. Comp. Neurol., 101, 317.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, D.H. (1967a). Visual intensity discrimination in pigeons following unilateral and bilateral tectal lesions. J. Comp. Physiol. Psychol., 63, 172.

    Article  CAS  Google Scholar 

  • Cohen, D.H. (1967b). The hyperstriatal region of the avian forebrain. A lesion study of possible functions including its role in cardiac and respiratory conditioning. J. Comp. Neurol., 131, 559.

    Article  CAS  Google Scholar 

  • Corner, M.A., J.P. Schadé, J. Sedláček, R. Stoeckart, and A.P.C. Bot. (1967). Developmental patterns in the central nervous system of birds. I. Electrical activity in the cerebral hemisphere, optic lobe & cerebellum. Prog. Brain Res., 26, 145.

    Article  PubMed  CAS  Google Scholar 

  • Corner, M.A., W.L. Bakhuis, and C. van Wingerden. (1973). Sleep and wakefulness during early life in the domestic chicken and their relationship to hatching and embryonic mortality. In “Prenatal Ontogeny of the Central Nervous System and Behaviour” ( Gottlieb G., Ed.). Chicago: University of Chicago Press.

    Google Scholar 

  • Couraud, J.Y., and L. DiGiamberardino. (1980). Axonal transport of the molecular forms of acetylcholinesterase in chick sciatic nerve. J. Neurochem., 35, 1053.

    Article  PubMed  CAS  Google Scholar 

  • Couraud, J.Y., L. DiGiamberardino, and R. Hassig. (1982). Slow transport of the molecular forms of butyrlcholinesterase in a peripheral nerve. Neuroscience (Oxford), 7: 1015.

    CAS  Google Scholar 

  • Cowan, W.M., L. Adamson, and T.P.S. Powell. (1961). An experimental study of the avian visual system. J. Anat., 95, 545.

    PubMed  CAS  Google Scholar 

  • Cuenod, R.J., A. Beaudet, V. Canzek, P. Streit, and J.C. Reubi. (1981). Glutamatergic pathways in the pigeon and the rat brain. Adv. Biochem. Psychopharmacol., 27, 57.

    PubMed  CAS  Google Scholar 

  • de Anda, G., and M.A. Rebollo. (1967). The neuromuscular spindles in the adult chicken. 1. Morphology. Acta Anat., 67, 437.

    Article  Google Scholar 

  • DeGennaro, L.D. (1982). The Glycogen Body. In “Avian Biology,” Vol. 6 ( D.S. Farner and J.R. King, Eds.). New York: Academic Press, p. 341.

    Google Scholar 

  • DeGennaro, L.D., and C.A. Benzo. (1976). Ultrastructural characterization of the accessory lobes of Lachi (Hofmann’s Nuclei) in the nerve cord of the chick. I. Axoglial synapses. J. Exp. Zool., 198, 97.

    Article  CAS  Google Scholar 

  • DeGennaro, L.D., and C.A. Benzo. (1978). Ultrastructural characterization of the accessory lobes of Lachi (Hofmann’s nuclei) in the nerve cord of the chick. II. Scanning and transmission electron microscopy with observations on the glycogen body. J. Exp. Zool., 206, 229.

    Article  CAS  Google Scholar 

  • DeLanerolle, N., and R.J. Andrew. (1974). Midbrain structures controlling vocalization in the domestic chick. Brain Behav. Evol., 10, 354.

    Article  Google Scholar 

  • Denbow, D.M., H.P. Van Krey, and J.A. Cherry. (1983). Feeding and drinking response of young chicks to injections of serotonin into the lateral entricle of the brain. Poultr. Sci., 61, 150.

    Google Scholar 

  • DePlazas, S.F. (1982). Ontogenesis of gamma amino butyric acid receptor sites in chick embryo cerebellum. Dev. Brain Res., 3, 263.

    Article  Google Scholar 

  • DeSantis, V.P., W. Längsfeld, R. Lindmar, and K. Loffelholz. (1975). Evidence for noradrenaline and adrenaline as sympathetic transmitters in the chicken. Br. J. Pharmacol., 55, 345.

    Google Scholar 

  • Desmedt, J.E., and P.J. Delwaide. (1963). Neuronal inhibition in a bird. Effect of strychnine and picrotoxin. Nature (London), 200, 585.

    Article  Google Scholar 

  • DeVoogd, T.J., and F. Nottenbohm. (1981). Sex differences in dendritic morphology of a song control nucleus in the canary: A quantitative Golgi study. J. Comp. Neurol., 196, 309.

    Article  PubMed  CAS  Google Scholar 

  • Dewhurst, W.G., and E. Marley. (1965). The effects of α-methyl derivatives of noradrenaline, phenylethylamine and tryptamine on the central nervous system of the chicken. Br. J. Pharmacol., 25, 682.

    CAS  Google Scholar 

  • Dorward, P.K., and A.K. Mclntyre. (1971). Responses of vibration-sensitive receptors in the interosseous region of the duck’s hind limb. J. Physiol. ( London ), 219, 77.

    CAS  Google Scholar 

  • Dubbeldam, J.L., and H.J. Karten. (1978). The trigeminal system in the pigeon (Columba livia). I. Projections of the Gasserian ganglion. J. Comp. Neurol., 180, 661.

    Article  PubMed  CAS  Google Scholar 

  • Dube, L., and A. Parent. (1981). The monoamine-containing neurons in avian brain 1. A study of the brain stem of the chicken (Gallus gallus domesticus) by means of fluorescence and acetylcholinesterase (E.C.3.1.1.7) histochemistry. J. Comp. Neurol., 196, 695.

    Article  PubMed  CAS  Google Scholar 

  • Duff, T.A., G. Scott, and R. Mai. (1981). Regional differences in pigeon optic tract, chiasm, and retino-receptive layers of the optic tectum. J. Comp. Neurol., 198, 231.

    Article  PubMed  CAS  Google Scholar 

  • Eden, A.R., and M.J. Correia. (1982). Identification of multiple groups of efferent vestibular neurons in the adult pigeon using horseradish peroxidase and DAPI. Brain Res., 248, 201.

    Article  PubMed  CAS  Google Scholar 

  • Enemar, A., B. Falck, and R. Håkanson. (1965). Observations on the appearance of norepinephrine in the sympathetic nervous system of the chick embryo. Dev. Biol., 11, 268.

    Article  PubMed  CAS  Google Scholar 

  • Erichsen,J.T., A. Reiner, and H.J. Karten. (1982). Co-occurrence of substance P-like and leucine enkephalin-like immunoreactivities in neurons and fibers of the avian nervous system. Nature (London), 295, 407.

    Article  CAS  Google Scholar 

  • Filliatreau, G., and L. DiGiamberardino. (1982). Quantitative analysis of axonal transport of cytoskeletal proteins in chicken oculomotor nerve. J. Neurochem., 39, 1033.

    Article  PubMed  CAS  Google Scholar 

  • Fink, A.S., P.M. Hefferan, and R.R. Howell. (1975). Enzymatic and biochemical characterization of the avian glycogen body. Comp. Biochem. Physiol. A, 508, 525.

    Google Scholar 

  • Firbas, W., and G. Muller. (1983). The efferent innervation of the avian cochlea. Hear. Res., 10, 109.

    Article  PubMed  CAS  Google Scholar 

  • Frontali, N. (1964). Brain glutamic acid decarboxylase and synthesis of y-aminobutyric acid in vertebrate and invertebrate species. In “Comparative Neurochemistry” (D. Richter, Ed.). Proc. Int. Neurochem. Symp. 5th, 1962. Oxford: Pergamon Press, p. 185.

    Google Scholar 

  • Gal, E.M., and F.D. Marshal. (1964). The hydroxylation of tryptophan by pigeon brain in vitro. Prog. Brain Res., 8, 56.

    Article  CAS  Google Scholar 

  • Gamlin, P.D., A. Reiner, and H.J. Karten. (1982). Substance P-containing neurons of the avian suprachiasmic nucleus project directly to the nucleus of Edinger-Westphal. Proc. Natl. Acad. Sci. U.S.A., 79, 3891.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Austt, E. (1954). Development of electrical activity in cerebral hemispheres of the chick embryo. Proc. Soc. Exp. Biol. Med., 86, 348.

    PubMed  Google Scholar 

  • Gilman, T.T., F.L. Marcuse, and A.U. Moore. (1950). Animal hypnosis: A study in the induction of tonic immobility in chickens. J. Physiol. Psychol., 43, 99.

    Article  CAS  Google Scholar 

  • Goldman, S.A., and F. Nottenbohm. (1983). Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc. Natl. Acad. Sci. U.S.A., 80, 2390.

    Article  PubMed  CAS  Google Scholar 

  • Gottschaldt, K.M., H. Fruhstorfer, M. Schmidt, and I. Kraft. (1982). Thermosensitivity and its possible fine-structural basis in mechanoreceptors in the beak skin of geese. J. Comp. Neurol., 105, 219.

    Article  Google Scholar 

  • Gregory, J.E. (1973). An electrophysiological investigation of the receptor apparatus of the duck’s bill. J. Physiol. ( London ), 229, 151.

    CAS  Google Scholar 

  • Gunne, L.M. (1963). Relative adrenaline content in brain tissue. Acta Physiol. Scand., 56, 324.

    Article  Google Scholar 

  • Gurney, M.E. (1983). Behavioral correlates of sexual differentiation in the zebra finch song system. Brain Res., 231, 153.

    Article  Google Scholar 

  • Haiden, G.J. (1981). The ultrastructure of the avian Golgi tendon organ. Anat. Ree., 200, 153.

    Article  CAS  Google Scholar 

  • Halata, Z., and B.L. Munger. (1980). The ultrastructure of Ruffini and Herbst corpuscles in the articular capsule of the domestic pigeon. Anat. Ree., 198, 681.

    Article  CAS  Google Scholar 

  • Hanig, J.P., and J. Seifter. (1968). Amines in the brain of neonate chicks after parenteral injection of biogenic and other amines. Fed. Proc. Fed. Am. Soc. Exp. Biol., 27, 651.

    Google Scholar 

  • Harvey, A.L., and D. Van Helden. (1981). Acetylcholine receptors in singly and multiply innervated skeletal muscle fibres of the chicken during development. J. Physiol. ( London ), 317, 397.

    CAS  Google Scholar 

  • Hayes, B.P., and K.E. Webster. (1981). Neurons situated outside the isthmo-optic nucleus and projecting to the eye in adult birds. Neurosci. Lett., 26, 107.

    Article  PubMed  CAS  Google Scholar 

  • Hebb, C.O. (1955). Choline acetylase in mammalian and avian sensory systems. Q.J. Exp. Physiol., 40, 176.

    CAS  Google Scholar 

  • Hebb, C.O., and D. Ratkovic. (1964). Choline acetylase in the evolution of the brain in vertebrates. In “Comparative Neurochemistry” (D. Richter, Ed.), Proc. Int. Neurochem. Symp., 5th. Oxford: Pergamon Press, p. 347.

    Google Scholar 

  • Hehman, K.N., A.R. Vonderahe, and J.J. Peters. (1961). Effect of serotonin on the behavior, electrical activity in the brain, Seizure threshold in the newly hatched chick. Neurology, 11, 1011.

    PubMed  CAS  Google Scholar 

  • Hendrikson, C.K., and J.E. Vaughn. (1974). Fine structural relationships between neurites and radial glial processes in developing mouse spinal cord. J. Neurocytol., 3, 659.

    Article  Google Scholar 

  • Hess, A., G. Pilar, and J.N. Weakly. (1969). Correlation between transmission and structure in avian ciliary ganglion synapses. J. Physiol. ( London ), 202, 339.

    CAS  Google Scholar 

  • Hodos, W., and H.J. Karten. (1966). Brightness and pattern discrimination deficits in the pigeon after lesions of nucleus rotundus. Exp. Brain Res., 2, 151.

    Article  PubMed  CAS  Google Scholar 

  • Hodos, W., H.J. Karten, and J.C. Bonbright. (1973). Visual intensity and pattern discrimination after lesions of the thalamo fugal visual pathway in pigeons. J. Comp. Neurol., 148, 447.

    Article  PubMed  CAS  Google Scholar 

  • Hodos, W., K.A. Macko, and D.I. Sommers. (1982). Interactions between components of the avian visual system. Behav. Brain Res., 5, 157.

    Article  PubMed  CAS  Google Scholar 

  • Holden, A.L., and T.P.S. Powell. (1972). The functional organization of the isthmo-optic nucleus in the pigeon. J. Physiol. ( London ), 223, 419.

    CAS  Google Scholar 

  • Horton, E.W. (1971). Prostaglandins. In “Physiology and Biochemistry of Domestic Fowl,” Vol. 1 ( D.J. Bell and B.M. Freeman, Eds.). New York: Academic Press, p. 589.

    Google Scholar 

  • Hummel, G. (1979). The fine structure of the bulbus olfactorius of the hen. Acta Histol. Embryol., 8, 289.

    Article  CAS  Google Scholar 

  • Ignarro, L.J., and F.E. Shideman. (1968). Appearance and concentrations of catecholamines and their biosynthesis in the embryonic and developing chick. J. Pharmacol. Exp. Ther., 159, 38.

    PubMed  CAS  Google Scholar 

  • James, N.T., and G.A. Meek. (1973). An electron microscopic study of avian muscle spindles. J. Ultrastruct. Res., 43, 193.

    Article  PubMed  CAS  Google Scholar 

  • Jeikouski, H., and D. Drenckhahn. (1981). Evidence for exclusive adrenergic innervation of feather muscles (mm. pennati) in the chicken. Histochemical studies and experiments with 5-hydroxydopamine. Cell Tissue Res., 221, 157.

    Article  Google Scholar 

  • Jhaveri, S., and D.K. Morest. (1982). Neuronal architecture in nucleus magnocellularis of the chicken auditory system with observations on nucleus laminaris: A light and electron microscope study. Neuroscience (Oxford), 7, 809.

    CAS  Google Scholar 

  • Jones, A.W., and R. Levi-Montalcini. (1958). Patterns of differentiation of the nerve centers and fiber tracts of the avian cerebral hemispheres. Arch. Ital. Biol., 96, 231.

    Google Scholar 

  • Jones, D.R., and K. Johansen. (1972). The blood vascular system of birds. In “Avian Biology,” Vol. 2 ( D.S. Farner and J.R. King, Eds.). New York: Academic Press, p. 158.

    Google Scholar 

  • Jukes, M.G.M. (1971). In “Biochemistry and Physiology of the Domestic Fowl,” Vol. 1 (D.J. Bell and B.M. Freeman, Eds.). New York: Academic Press, p. 171.

    Google Scholar 

  • Juorio, A.V., and M. Vogt. (1967). Monoamines and their metabolites in the avian brain. J. Physiol. ( London ), 189, 489.

    CAS  Google Scholar 

  • Juorio, A.V., and M. Vogt. (1970). Adrenaline in bird brain. J. Physiol. ( London ), 209, 757.

    CAS  Google Scholar 

  • Karten, H.J. (1963). Ascending pathways from the spinal cord in the pigeon (Columba livia). Proc. Int. Cong. Zool., 16th, 2, 23.

    Google Scholar 

  • Karten, H.J. (1966). Efferent projections of the nucleus mesencephalicus lateralis, pars dorsalis (MLD) in the pigeon (Columba livia). Anat. Ree., 154, 365.

    Google Scholar 

  • Karten, H.J. (1967a). The organization of the ascending auditory pathway in the pigeon (Columba livia) 1. Diencephalic projections of the inferior colliculus (nucleus mesencephalicus lateralis pars dorsalis). Brain Res., 6, 409.

    Article  CAS  Google Scholar 

  • Karten, H.J. (1967b). Telencephalic projections of the nucleus ovoidalis in the pigeon (Columba livia). Anat. Ree., 157, 268.

    Google Scholar 

  • Karten, H.J. (1968). The ascending auditory pathway in the pigeon. II. Telencephalic projections of the nucleus ovoidalis thalami. Brain Res., 11, 134.

    Article  PubMed  CAS  Google Scholar 

  • Karten, H.J. (1969). The organization of the avian telencephalon and some speculations on the phylogeny of amniote telencephalon. Ann. N.Y. Acad. Sci., 167, 164.

    Article  Google Scholar 

  • Karten, H.J., and A.M. Revzin. (1966). The afferent connections of the nucleus rotundus in the pigeon. Brain Res., 2, 368.

    Article  PubMed  CAS  Google Scholar 

  • Karten, H.J., and W. Hodos. (1967). “A Stereotaxic Atlas of the Brain of the Pigeon (Columba livia).” Baltimore: Johns Hopkins Press.

    Google Scholar 

  • Karten, H.J., W. Hodos, W.J.H. Nauta, and A.M. Revzin. (1973). Neural connections of the “Visual Wulst” of the avian telencephalon. Experimental studies in the pigeon (Columba livia) and owl (Speotyto cunicularia). J. Comp. Neurol., 150, 253.

    Article  PubMed  CAS  Google Scholar 

  • Katori, M. (1962). The development of the spontaneous electrical activity in the brain of a chick embryo and the effects of several drugs on it. Jpn. J. Pharmacol., 12, 9.

    Article  CAS  Google Scholar 

  • King, A.S., and V. Molony. (1971). The anatomy of respiration. In “Physiology and Biochemistry of the Domestic Fowl” ( D.J. Bell and B.M. Freeman, Eds.). New York: Academic Press, p. 93.

    Google Scholar 

  • Kirsch, M., R.B. Coles, and J.H. Leppelsack. (1980). Unit recordings from a new auditory area in the frontal neostriatum of the awake starling (Sturnus vulgaris). Exp. Brain Res., 38, 375.

    Article  PubMed  CAS  Google Scholar 

  • Kitt, C.A., and S.E. Brauth. (1982). A paleostriatal-thalamic-telencephalic path in pigeons. Neuroscience (Oxford), 7, 2735.

    CAS  Google Scholar 

  • Knowlton, V.Y. (1964). Abnormal differentiation of embryonic avian brain centres associated with unilateral anophthalmia. Acta Anat., 58, 222.

    Article  PubMed  CAS  Google Scholar 

  • Koenig, H.L., L. DiGiamberadino, and G. Bennett. (1973). Renewal of proteins and glycoproteins of synaptic constituents by means of axonal transport. Brain Res., 62, 413.

    Article  PubMed  CAS  Google Scholar 

  • Koley, J., J. SenGupta, S.P. Sarkar, and B.N. Koley. (1979). Sympathetic afferents from the avian abdomen. Int. Res. Comm. Symp. Med. Sci. Lib. Compend., 7, 245.

    Google Scholar 

  • Kovacs, S.A., G.C. Wilson, andJ.K. Kovach. (1981). Normal EEG of the restrained twenty-four-hour-old Japanese quail (Coturnix coturnix japonica). Poult. Sci., 60, 243.

    PubMed  CAS  Google Scholar 

  • Kramer, S.2., and J. Seifter. (1966). The effects of GABA and biogenic amines on behavior and brain electrical activity in chicks. Life Sci., 5, 527.

    Article  Google Scholar 

  • Kuenzel, W.J., and A. van Tienhoven. (1982). Nomenclature and location of avian hypothalamic nuclei and associated circumventricular organs. J. Comp. Neurol., 206, 293.

    Article  PubMed  CAS  Google Scholar 

  • Kuriyama, K., B. Sisken, J. Ito, D.G. Simonsen, B. Haber, and E. Roberts. (1968). The y-aminobutyric acid system in the developing chick embryo cerebellum. Brain Res., 11, 412.

    Article  PubMed  CAS  Google Scholar 

  • Lajtha, A. (1957). The development of the blood-brain barrier. J. Neurochem., 1, 216.

    Article  PubMed  CAS  Google Scholar 

  • Lasjewski, R.C. (1972). Respiratory function in birds. In “Avian Biology,” Vol. 2 ( D.S. Farner andJ.R. King, Eds.). New York: Academic Press, p. 288.

    Google Scholar 

  • Leitner, L.-M., and M. Roumy. (1974a). Mechanosensitive units in the upper bill and in the tongue of the domestic duck. Pfleugers Arch., 346, 141.

    Article  CAS  Google Scholar 

  • Leitner, L.-M., and M. Roumy. (1974b). Thermosensitive units in tongue and in the skin of the duck’s bill. Pfleugers Arch., 346, 151.

    Article  CAS  Google Scholar 

  • Levi-Montalcini, R. (1950). The origin and development of the visceral system in the spinal cord of the chick. J. Morphol., 86, 253.

    Article  Google Scholar 

  • Lubinska, L. (1975). On axoplasmic flow. Int. Rev. Neuro-biol., 17, 241.

    Article  CAS  Google Scholar 

  • Maier, A. and E. Eldred. (1971). Comparisons in the structure of avian muscle spindles. J. Comp. Neurol., 143, 25.

    Article  PubMed  CAS  Google Scholar 

  • Malinovski, L., and L. Pac. (1980). Ultrastructure of the Herbst corpuscle from beak skin of the pigeon. Z. Mikrosk. Anat. Forsch., 94, 292.

    Google Scholar 

  • Manni, E., G.M. Azzena, and R. Bortolani. (1965). Jaw muscle proprioception and mesencephalic trigeminal cells in birds. Exp. Neurol., 12, 320.

    Article  PubMed  CAS  Google Scholar 

  • Marko, P., and M. Cuenod. (1973). Contribution of the nerve cell body to renewal of axonal and synaptic glycoproteins in the pigeon visual system. Brain Res., 62, 419.

    Article  PubMed  CAS  Google Scholar 

  • Martin. A.H. (1979). A cytoarchitectonic scheme for the spinal cord of the domestic fowl (Gallus gallus domesticus): Lumbar region. Acta Morphol. Neerl.-Scand., 17, 105.

    PubMed  CAS  Google Scholar 

  • Martin, A.R., and G. Pilar. (1963a). Dual mode of synaptic transmission in the avian ciliary ganglion. J. Physiol. ( London ), 168, 443.

    CAS  Google Scholar 

  • Martin, A.R., and G. Pilar. (1963b). Transmission through the ciliary ganglion of the chick. J. Physiol. ( London ), 168, 464.

    CAS  Google Scholar 

  • Martin, A.R., and G. Pilar. (1964). An analysis of electrical coupling at synapses in the avian ciliary ganglion. J. Physiol. ( London ), 171, 454.

    CAS  Google Scholar 

  • McCasland,J.S., and M. Konishi. (1981). Interaction between auditory and motor activities in an avian song control nucleus. Proc. Natl. Acad. Sci. U.S.A., 78, 7815.

    Article  PubMed  CAS  Google Scholar 

  • McGill, J.J., T.P.S. Powell, and W.M. Cowan. (1966). The retinal representation upon the optic tectum and isthmo-optic nucleus in the pigeon. J. Anat., 100, 5.

    PubMed  CAS  Google Scholar 

  • Miceli, D., and J. Reperant. (1982). Thalamo-hyperstriatal projections in the pigeon (Columba livia) as demonstrated by retrograde double labeling with fluorescent tracers. Brain Res., 245, 365.

    Article  PubMed  CAS  Google Scholar 

  • Morales, R., and D. Duncan. (1975). Specialized contacts of astrocytes with astrocytes and with other cell types in the spinal cord of the cat. Anat. Rec., 182, 255.

    Article  PubMed  CAS  Google Scholar 

  • Narayanan, C.H., and Y. Narayanan. (1976). An experimental inquiry into the central source of preganglionic fibers to the chick ciliary ganglion. J. Comp. Neurol., 166, 101.

    Article  PubMed  CAS  Google Scholar 

  • Newman, J.D. (1972). Midbrain control of vocalization in redwinged blackbirds (Agelaius phoeniceus). Brain Res., 48, 227.

    Article  PubMed  CAS  Google Scholar 

  • Nistico, T. (1980). Relations between dopaminergic and gamma amino butyric acid-ergic mechanisms in avian brain. Pharmacol. Res. Commun., 12, 507.

    Article  PubMed  CAS  Google Scholar 

  • Noden, D.M. (1980). Somatotopic and functional organization of the avian trigeminal ganglion. Horseradish peroxidase analysis in the hatchling chick. J. Comp. Neurol., 190, 405.

    Article  PubMed  CAS  Google Scholar 

  • Noden, D.M. (1983a). The role of the neural crest in patterning of avian cranial skeletal, connective and muscle tissues. Dev. Biol., 96, 144.

    Article  CAS  Google Scholar 

  • Noden, D.M. (1983b). The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. Am. J. Anat., 168, 257.

    Article  CAS  Google Scholar 

  • Nottenbohm, F. (1980a). Brain pathways for vocal learning in birds: A review of the first 10 years. In “Progress in Psychobiology and Physiological Psychology,” Vol. 9 ( J.M.S. Sprague and A.N.E. Epstein, Eds.). New York: Academic Press, p. 84.

    Google Scholar 

  • Nottenbohm, F. (1980b). Testosterone triggers growth of brain vocal control nuclei in adult female canaries. Brain Res., 189, 429.

    Article  Google Scholar 

  • Nottenbohm, F., D.B. Kelley, and J.A. Paton. (1982). Connections of vocal control nuclei in the canary telencephalon. J. Comp. Neurol., 207, 344.

    Article  Google Scholar 

  • Ohmori, Y., T. Watanabe, and T. Fujioka. (1982). Localization of the motoneurons innervating the forelimb muscles in the spinal cord of the domestic fowl. Anat. Histol. Embryol., 11, 124.

    Article  PubMed  CAS  Google Scholar 

  • Ookawa, T. (1972a). Polygraphic recording during adult hen hypnosis. Poult. Sci., 51, 853.

    CAS  Google Scholar 

  • Ookawa, T. (1972b). Avian wakefulness and sleep on the basis of recent electroencephalographic observations. Poult. Sci., 51, 1565.

    CAS  Google Scholar 

  • Ookawa, T. (1973a). Notes of abnormal electroencephalograms in the telencephalon of the chicken and pigeon. Poult. Sci., 52, 182.

    CAS  Google Scholar 

  • Ookawa, T. (1973b). Effect of strychnine on the electroencephalogram recorded from the Wulst of curarized adult chickens. Poult. Sci., 52, 1090.

    CAS  Google Scholar 

  • Ookawa, T. (1973c). Effect of intravenously administered strychnine on the EEG recorded from the deep structure of the adult chicken telencephalon. Poults. Sci., 52, 806.

    CAS  Google Scholar 

  • Ookawa, T. (1973d). Effect of some convulsant drugs on the electroencephalogram recorded from the Wulst of the adult chicken and pigeon under curarized conditions. Poult. Sci., 52, 1704.

    CAS  Google Scholar 

  • Ookawa, T. (1977). Behavioral and electroencephalographic manifestations of avian epilepsy: A review of the literature. Poult. Sci., 56, 773.

    PubMed  CAS  Google Scholar 

  • Ookawa, T., and J. Gotoh. (1965). Electroencephalogram of the chicken recorded from the skull under various conditions. J. Comp. Neurol., 124, 1.

    Article  PubMed  CAS  Google Scholar 

  • Ookawa, T., and K. Takagi. (1968). Electroencephalograms of free behavioral chicks at various developmental ages. Jpn.J. Physiol., 18, 87.

    Article  Google Scholar 

  • Ookawa, T.,J. Gotoh, T. Kumazawa, and K. Takagi. (1962). Electroencephalogram of chickens. Proc. Meeting Jpn. Soc. Vet. Sci., 53rd, Jpn. J. Vet. Sci., 24 (Suppl.), 438.

    Google Scholar 

  • Oscarsson, O., I. Rosen, and N. Uddenberg. (1963). Organization of the ascending tracts in the spinal cord of the duck. Acta Physiol. Scand., 59, 143.

    Article  PubMed  CAS  Google Scholar 

  • Pac, L. (1982). Contribution to the study of Merkel corpuscles in the domestic fowl. Folia Morphol. ( Warsaw ), 30, 340.

    CAS  Google Scholar 

  • Parks, T.N. (1981). Morphology of axosomatic endings in an avian cochlear nucleus: Nucleus magnocellularis of the chicken. J. Comp. Neurol., 203, 425.

    Article  PubMed  CAS  Google Scholar 

  • Parks, T.N., P. Collins, and J.W. Conlee. (1983). Morphology and origin of axonal endings in the nucleus laminaris of the chicken. J. Comp. Neurol., 214, 32.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, R. (1972). “The Avian Brain.” New York: Academic Press.

    Google Scholar 

  • Peinone, S.M. and L.S. Daneo. (1978). Ultrastructural observations on avian muscle spindles: Evidence of three intrafusal fibre types. Riv. Biol., 71, 3.

    Google Scholar 

  • Peters, J.J., and E.J. Hilgeford. (1971). EEG episodes of rhythmic waves and Scizure patterns following hypothermic hypoxia in the chick embryo. Electroencephalogr. Clin. Neurophysiol., 31, 631.

    Article  Google Scholar 

  • Peters, J.J., C.J. Cusick, and A.R. Vonderahe. (1961). Electrical studies of hypothermic effects on the eye, cerebrum and skeletal muscles of the developing chick. J. Exp. Zool., 148, 31.

    Article  PubMed  CAS  Google Scholar 

  • Peters, J.J., A.R. Vonderahe, and J.J. McDonough. (1964). Electrical changes in brain and eye of the developing chick during hyperthermia. Am. J. Physiol., 207, 260.

    PubMed  CAS  Google Scholar 

  • Peters, J.J., T.P. Bright, and A.R. Vonderahe. (1968). Electroencephalographic studies of survival following hypothermic hypoxia in developing chicks. J. Exp. Zool., 167, 179.

    Article  PubMed  CAS  Google Scholar 

  • Peters,J.J., A.R. Vonderahe, and E.J. Hilgeford. (1969). Electroencephalographic episodes of 1 to 7 per second rhythmic waves following hypothermic hypoxia in developing chicks. J. Exp. Zool., 170, 427.

    Article  PubMed  CAS  Google Scholar 

  • Pohorecky, L.A., M.J. Zigmond, H.J. Karten, and R.J. Wurtman. (1968). Phenylethanolamine-N-methyltransferase activity (PNMT) in mammalian, avian and reptilian brain. Fed. Proc. Fed. Am.’ Soc. Exp. Biol., 27, 239.

    Google Scholar 

  • Pomeroy, L.R., and A.J. Welch. (1967). Computer-assisted electroencephalograph analysis of chick pyridoxine deficiency states. Technical Report 36, The University of Texas, Austin, p. 1.

    Google Scholar 

  • Potash, L.M. (1970). Neuroanatomical regions relevant to production and analysis of vocalization within the avian torus semicircularis. Experientia, 26, 1104.

    Article  PubMed  CAS  Google Scholar 

  • Powell, T.P.S., and W.M. Cowan. (1961). The thalamic projection upon the telencephalon in the pigeon (Columba livia). J. Anat., 95, 78.

    PubMed  CAS  Google Scholar 

  • Putkonen, P.T.S. (1967). Electrical stimulation of the avian brain. Ann. Acad. Sci. Fenn., Ser. A5, 130, 1.

    Google Scholar 

  • Reiner, A., N.C. Brecha, and H.J. Karten. (1982). Basal ganglia pathways to the tectum. The afferent and efferent connections of the lateral spiriform nucleus of the pigeon. J. Comp. Neurol., 208, 16.

    Article  PubMed  CAS  Google Scholar 

  • Reiner, A., H.J. Karten, and N.C. Brecha. (1982). Enkephalin-mediated basal ganglia influences over the optic tectum: Immunohistochemistry of the tectum and lateral spiriform nucleus in the pigeon. J. Comp. Neurol., 208, 37.

    Article  PubMed  CAS  Google Scholar 

  • Reiner, A., H.J. Karten, P.D.R. Gamlin, and J.T. Erichsen. (1983). Parasympathetic ocular control. Functional subdivision and circuitry of the avian nucleus of Edinger-Westphal. Trends Neurosci., 6, 140.

    Article  Google Scholar 

  • Revzin, A.M., and H. Karten. (1967). Rostral projections of the optic tectum and the nucleus rotundus in the pigeon. Brain Res., 3, 264.

    Article  Google Scholar 

  • Ryan, S.M., A.P. Arnold, and R.P. Elde. (1981). Enkephalin-like immunoreactivity in vocal control regions of the zebra finch brain. Brain Res., 229, 236.

    Article  PubMed  CAS  Google Scholar 

  • Rylander, M.K., and J. Snow. (1982). Cytoarchitectonic of some nuclei in the avian auditory and visual systems. Anat. Anz., 151, 421.

    PubMed  CAS  Google Scholar 

  • Saffrey, M.J.J.M. Polak, and G. Burnstock. (1982). Distribution of vasoactive intestinal polypeptide-, substance P-, enkephalin- and neurotensin-like immunoreactive nerves in the chicken gut during development. Neuroscience, 7, 279.

    Article  PubMed  CAS  Google Scholar 

  • Sammartino, U. (1933). Sugli animali a midolla spinale accrociato. Arch. Farmacol. Sper., 55, 219.

    Google Scholar 

  • Sansone, F.M. (1977). The craniocaudal extent of the glycogen body in the domestic chicken. J. Morphol., 153, 87.

    Article  PubMed  CAS  Google Scholar 

  • Sansone, F.M. (1980). An ultrastructural study of the craniocaudal continuation of the glycogen body. J. Morphol., 163, 45.

    Article  PubMed  CAS  Google Scholar 

  • Sanson, F.M. and F.J. Lebeda. (1976). A brachial glycogen body in the spinal cord of the domestic chicken. J. Morphol. 148, 23.

    Article  Google Scholar 

  • Sato, H., A. Ohga, and Y. Nakazato. (1970). The excitatory and inhibitory innervation of the stomachs of the domestic fowl. Jpn. J. Pharmacol., 20, 382.

    Article  PubMed  CAS  Google Scholar 

  • Scholes, N.W., and E. Roberts. (1964). Pharmacological studies of the optic system of the chick: Effect of y-aminobutyric acid and pentobarbital. Biochem. Pharmacol., 13, 1319.

    Article  PubMed  CAS  Google Scholar 

  • Seller, T.J. (1980). Midbrain regions involved in call production in Java sparrows. Behav. Brain Res., 1, 257.

    Article  PubMed  CAS  Google Scholar 

  • Sheff, A.G., and L.L. Tureen. (1962). EEG studies of normal and encephalomalacia chicks. Proc. Soc. Exp. Biol. Med., 111, 407.

    PubMed  CAS  Google Scholar 

  • Shiosaka, S., K. Takatsuki, S. Inagaki, M. Sakanaka, H. Takaji, E. Senba, T. Matsugaki, and M. Tohyama. (1981). Topographic atlas of somatostatin-containing neuron system. I. Telencephalon and diencephalon. J. Comp. Neurol., 202, 103.

    Article  PubMed  Google Scholar 

  • Showers, M.C. (1982). Telencephalon of birds. In “Comparative Correlative Neuroanatomy of the Vertebrate Telencephalon” ( E.C. Crosby and H.N. Schnitzlein, Eds.). New York: Macmillan, p. 218.

    Google Scholar 

  • Sivak, J.G. (1983). Ultrastructure of the avian iris dilator muscle. Rev. Can. Biol. Exp., 42, 57.

    PubMed  CAS  Google Scholar 

  • Skoglund, C.R. (1960). Properties of pacinian corpuscles of ulnar and tibial location in cat and fowl. Acta Physiol. Scand., 50, 385.

    Article  Google Scholar 

  • Snell, R.S. (1975). “Clinical Embryology for Medical Students,” 2nd ed. Boston: Little, Brown.

    Google Scholar 

  • Spooner, C.E., and W.D. Winters. (1966a). Neuropharmaco- logical profile of the young chick. Int. J. Neuropharmacol., 5, 217.

    Article  CAS  Google Scholar 

  • Spooner, C.E., and W.D. Winters. (1966b). Distribution of monoamines and regional uptake of DL-norepinephrine-7-H3 and dopamine-1-H3 in the avian brain. Pharmacologist, 8, 189.

    Google Scholar 

  • Spooner, C.E., and W.D. Winters. (1967). Evoked responses during spontaneous and monoamine-induced states of wakefulness. Brain Res., 4, 189.

    Article  PubMed  CAS  Google Scholar 

  • Spooner, C.E., and W.D. Winters, and A.J. Mandell. (1966). DL-Norepinephrine-7-H3 uptake, water content and thiocyanate space in the brain during maturation. Fed. Proc. Fed. Am. Soc. Exp. Biol., 25, 451.

    Google Scholar 

  • Stewart, P.A., and M.J. Wiley. (1981). Structural and histo-chemical features of the avian blood-brain barrier. J. Comp. Neurol., 202, 157.

    Article  PubMed  CAS  Google Scholar 

  • Straznicky, C., and D. Tay. (1983). The localization of motoneuron pools innervating wing muscles in the chick. Acta Embryol., 166, 209.

    Article  CAS  Google Scholar 

  • Strutz, J., and C.L. Schmidt. (1982). Acoustic and vestibular efferent neurons in the chicken (Gallus domesticas). A horseradish peroxidase study. Acta Otolaryngol. ( Stockh. ), 94, 45.

    Article  CAS  Google Scholar 

  • Sugihara, K., and J. Gotoh. (1973). Depth electroencephalograms of chickens in wakefulness and sleep. Jpn. J. Physiol., 23, 371.

    Article  PubMed  CAS  Google Scholar 

  • Swank, R.L., and H.H. Jasper. (1942). Electroencephalograms of thiamine-deficient pigeons. Arch. Neurol. Psychiatry, 47, 821.

    CAS  Google Scholar 

  • Takatsuji, K., H. Ito, and H. Masai. (1983). Ipsilateral retinal projections in the Japanese quail, Coturnix coturnix japonica. Brain Res. Bull., 10, 53.

    Article  PubMed  CAS  Google Scholar 

  • ten Cate, J. (1960). Locomotor movements in the spinal pigeon. J. Exp. Biol., 37, 609.

    Google Scholar 

  • Tindall, A.R. (1979). The innervation of the hind gut of the domestic fowl. Br. Poult. Sci., 20, 473.

    Article  PubMed  CAS  Google Scholar 

  • Toggenburger, G., D. Felix, M. Cuenod, and H. Henke. (1982). In vitro release of endogenous beta-alanine, GAB A, and glutamate, and electrophysiological effect of beat-alanine in pigeon optic tectum. J. Neurochem., 39, 176.

    Article  PubMed  CAS  Google Scholar 

  • Tokaji, E., and R.W. Gerard. (1939). Avitaminosis B, and pigeon brain potentials. Proc. Soc. Exp. Biol. Med., 41, 653.

    CAS  Google Scholar 

  • Tsukada, Y., K. Uemura, S. Hirano, and Y. Nagata. (1962). In “Comparative Neurochemistry” (D. Richter, Ed.). Proc. 5th Int. Neurochem. Symp., 5th. Oxford: Pergamon Press, p. 179.

    Google Scholar 

  • Tuge, H., Y. Kanayama, and C.H. Yueh. (1960). Comparative studies on the development of the EEG. Jpn. J. Physiol., 10, 211.

    Article  PubMed  CAS  Google Scholar 

  • Uehara, M., T. Veshima, and N. Kudo. (1982). The fine structure of glycogen-containing cells in the chicken spinal cord. Jpn. J. Vet. Res., 30, 1.

    PubMed  CAS  Google Scholar 

  • van Tienhoven, A., and L.P. Juhász. (1962). The chicken telencephalon, diencephalon and mesencephalon in stero- taxic coordinates. J. Comp. Neurol., 118, 185.

    Article  Google Scholar 

  • Waelsch, H. (1955). In “Biochemistry of the Developing Nervous System” (H. Waeisch, Ed.). New York: Academic Press, p. 187.

    Google Scholar 

  • Watanabe, T. (1960). On the peripheral course of the vagus nerve in the fowl. Jpn. J. Vet. Sci., 22, 145.

    Article  Google Scholar 

  • Watanabe, T. (1964). Peripheral courses of the hypoglossal, accessory and glossopharayngeal nerves. Jpn. J. Vet. Sci., 26, 249.

    Article  CAS  Google Scholar 

  • Watanabe, T., and M. Yasuda. (1968). Peripheral course of the olfactory nerve in the fowl. J. Vet. Sci., 30, 275.

    Article  CAS  Google Scholar 

  • Watanabe, T., and M. Yasuda. (1970). Peripheral course of the trigeminal nerve in the fowl. Jpn. J. Vet. Sci., 32, 43.

    Article  CAS  Google Scholar 

  • Watanabe, T., G. Isomura, and M. Yasuda. (1967). Distribution of nerves in the oculomotor and ciliary muscles. Jpn. J. Vet. Sci., 29, 151.

    Article  CAS  Google Scholar 

  • Watanabe, M., H. Ito, and H. Masai. (1983). Cytoarchitecture and visual receptive neurons in the Wulst of the Japanese quail (Coturnix coturnix japonica). J. Comp. Neurol., 213, 188.

    Article  PubMed  CAS  Google Scholar 

  • Whitehead, M.C., and D.K. Morest. (1981). Dual populations of efferent and afferent cochlear axons in the chicken (Gallus gallus). Neuroscience, 6, 2351.

    Article  PubMed  CAS  Google Scholar 

  • Whitlock, D.G. (1952). A neurohistological and neurophysiological study of afferent fiber tracts and receptive areas of the avian cerebellum. J. Comp. Neurol., 97, 567.

    Article  PubMed  CAS  Google Scholar 

  • Wold, J.E. (1979). The vestibular nuclei in the domestic hen (Gallus domesticus). VII. Afferents from the spinal cord. Arch. Ital. Biol., 117, 30.

    PubMed  CAS  Google Scholar 

  • Wold, J.E. (1981). The vestibular nuclei in the domestic hen (Gallus domesticus): VI. Afferents from the cerebellum. J. Comp. Neurol., 201, 319.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, S., and S.I. Mikami. (1982). Immunohistochemical localization of vasoactive intestinal polypeptide-containing neurons in the hypothalamus of the Japanese quail, Coturnix coturnix. Cell Tissue Res., 226, 13.

    PubMed  CAS  Google Scholar 

  • Yasuda, M. (1960). On the nervous supply of the thoracic limb in the fowl. Jpn. J. Vet. Sci., 22, 89.

    Article  Google Scholar 

  • Yasuda, M. (1961). On the nervous supply of the hind limb of the fowl. Jpn. J. Vet. Sci., 23, 145.

    Article  Google Scholar 

  • Zaretsky, M.D. (1978). A new auditory area of the song bird forebrain: A connection between auditory and song control centers. Exp. Brain Res., 32, 267.

    Article  PubMed  CAS  Google Scholar 

  • Zecha, A. (1961). Bezit een vogel een fasciculus rubro-bulbo-spinalis? Ned. Tijdschr. Geneeskd., 105, 2373.

    Google Scholar 

  • Zecha, A. (1962). The “pyramidal tract” and other telen- cephalic efferents in birds. Acta Morph. Neerl.-Scand., 5, 194.

    Google Scholar 

  • Zeigler, H.P. (1963). Effects of endbrain lesions upon visual discrimination learning in pigeons. J. Comp. Neurol., 120, 161.

    Article  PubMed  CAS  Google Scholar 

  • Zeigler, H.P., and H.J. Karten. (1973). Brain mechanisms and feeding behaviour in the pigeon (Columba livia). I. Quintofrontal structures. J. Comp. Neurol., 152, 59.

    Article  PubMed  CAS  Google Scholar 

  • Ziller, C., and J. Smith. (1982). Migration and differentiation of neural crest cells and their derivitives: In vivo and in vitro studies on the early development of the avian peripheral nervous system. Reprod. Nutr. Dev., 22, 153.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Benzo, C.A. (1986). Nervous System. In: Sturkie, P.D. (eds) Avian Physiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4862-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4862-0_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9335-4

  • Online ISBN: 978-1-4612-4862-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics