Advertisement

Instrumental Evaluation of Thin-Layer Chromatograms

  • Colin F. Poole
  • Hal T. Butler
  • Myra E. Coddens
  • Sheila A. Schuette

Abstract

Recent changes in the practice of thin-layer chromatography (TLC) have created a renaissance of interest in this technique and led to its wider acceptance as a powerful tool for qualitative and quantitative analysis of mixtures. The performance breakthrough in TLC, referred to as high performance thin-layer chromatography (HPTLC), was not a result of any specific advances in instrumentation or materials, but was rather a culmination of improvements in practically all of the operations comprising TLC, [1–6]. Improvements in the quality of the sorbent layer, methods of sample application, new development techniques, and the availability of scanning densitometers for in situ quantitative analysis were all important developments in the evolution of HPTLC. The new HPTLC plates were prepared from sorbents of smaller average particle diameter and of narrower particle size distribution than those used to prepare conventional TLC plates. The performance of these plates improved an order of magnitude over those used for conventional TLC. Because of the lower sample capacity of the HPTLC sorbent layer, the amount of sample applied to it had to be scaled down from those commonly used in conventional TLC. Typical sample volumes applied to the plates are in the range 100–200 nl, sample amounts less than ca. 0.1 μg, and starting spot sizes of 1.0–2.0 mm.

Keywords

Polycyclic Aromatic Hydrocarbon Slit Width Plate Surface Sample Application Instrumental Evaluation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zlatkis, A. and Kaiser, R.E.: HPTLC: High Performance Thin-Layer Chromatography. Elsevier, Amsterdam, 1977.Google Scholar
  2. 2.
    Bertsch, W., Hara, S., Kaiser, R.E. and Zlatkis, A.: Instrumental HPTLC. Huthig, Heidelberg, 1980.Google Scholar
  3. 3.
    Fenimore, D.C. and Davis, C.M.: High performance thin-layer chromatography. Anal. Chem. 53: 252A–266A, 1981.CrossRefGoogle Scholar
  4. 4.
    Coddens, M.E., Butler, H.T., Schuette, S.A. and Poole, C.F.: Quantitation in high performance thin-layer chromatography. Liq. Chromatogr. HPLC Magzn. 1: 282–289, 1983.Google Scholar
  5. 5.
    Poole, C.F. and Schuette, S.A.: Contemporary Practice of Chromatography. Elsevier, Amsterdam, 1984, pp. 619–700.Google Scholar
  6. 6.
    Poole, C.F., Coddens, M.E., Butler, H.T., Schutte, S.A., Ho, S.S.J., Khatib, S., Piet, L. and Brown, K.K.: Some quantitative aspects of high pereformance thin-layer chromatography. J. Liquid. Chromatogr., 1985, in press.Google Scholar
  7. 7.
    Halpaap, H. and Krebs, K.F.: Thin-layer chromatographic and high-perfor-mance thin-layer chromatographic ready-for-use preparations with concentrating zones. J. Chromatogr. 142: 823–853, 1977.CrossRefGoogle Scholar
  8. 8.
    Fenimore, D.C. and Meyer, C.J.: Contact spotting: a new approach to sample application in thin-layer chromatography. J. Chromatogr. 186: 555–561, 1979.CrossRefGoogle Scholar
  9. 9.
    Davis, C.M. and Harrington, C.A.: Quantitative determination of chlorpromazine and thioridazine by high-performance thin-layer chromatography. J. Chromatogr. Sci. 22: 71–74, 1984.PubMedGoogle Scholar
  10. 10.
    Fenimore, D.C.: Sample application in instrumentalized HPTLC. In Instrumental HPTLC, Bertsch, W., Hara, S., Kaiser, R.E. and Zlatkis, A., eds., Huthig, Heidelberg, 1980, pp. 81–95.Google Scholar
  11. 11.
    Pollock, V.: Progress in photometric methods of quantitative evaluation in TLC. Advan. Chromatogr. 17: 1–51, 1979.Google Scholar
  12. 12.
    Touchstone, J.C. and Sherma, J.: Densitometry in thin-layer chromatography. John Wiley and Sons, New York, 1979.Google Scholar
  13. 13.
    Hurtubise, R.J.: Solid Surface Luminescence Analysis: Theory, Instrumentation, Applications. Marcel Dekker, New York, 1981.Google Scholar
  14. 14.
    Ebel, S. and Post, P.: Theory of reflectance measurements in quantitative evaluation in TLC and HPTLC. J. High Resolut. Chromatogr. Chromatogr. Commun. 4: 337–342, 1981.CrossRefGoogle Scholar
  15. 15.
    Bush, I.E. and Greeley, H.P.: Computer simulation of light transmission through scattering and absorbing chromatographic media. Anal. Chem. 56: 91–96, 1984.CrossRefGoogle Scholar
  16. 16.
    Coddens, M.E., Khatib, S., Butler, H.T., and Poole, C.F.: Mode selection and optimization of parameters for recording high performance thin-layer chromatograms by transmission measurements. J. Chromatogr. 280: 15–22, 1983.CrossRefGoogle Scholar
  17. 17.
    Cheng, M.-L. and Poole, C.F.: Minor component tablet analysis by high performance thin-layer chromatography. J. Chromatogr. 257: 140–145, 1983.PubMedCrossRefGoogle Scholar
  18. 18.
    Butler, H.T., Schuette, S.A., Pacholec, F. and Poole, C.F.: Characterization of a scanning densitometer for high performance thin-layer chromatography. J. Chromatogr. 261: 55–63, 1983.CrossRefGoogle Scholar
  19. 19.
    Butler, H.T. and Poole, C.F.: Optimization of a scanning densitometer for fluorescence detection in high performance thin-layer chromatography. J. High Resolut. Chromatogr. Chromatogr. Commun. 6: 77–81, 1983.CrossRefGoogle Scholar
  20. 20.
    Coddens, M.E. and Poole, C.F.: Sensitivity of scanning densitometers for thin- layer chromatography. Anal. Chem. 55: 2429–2431, 1983.CrossRefGoogle Scholar
  21. 21.
    Coddens, M.E. and Poole, C.F.: Protocol for measuring the sensitivity of slitscanning densitometers. Liq. Chromatogr. HPLC Magzn. 2: 34–36, 1984.Google Scholar
  22. 22.
    Lee, K.Y., Poole, C.F. and Zlatkis, A.: Simultaneous multi-mycotoxin analysis by high performance thin-layer chromatography. Anal. Chem. 52: 837–842, 1980.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhou, L., Poole, C.F., Triska, J. and Zlatkis, A.: Continuous development HPTLC and sequential wavelength scanning for the simultaneous determination of nine clinically important /3-blocking drugs. J. High Resolut. Chromatogr. Chromatogr. Commun. 3: 440–446, 1980.CrossRefGoogle Scholar
  24. 24.
    Butler, H.T., Coddens, M.E. and Poole, C.F.: Qualitative identification of polycyclic aromatic hydrocarbons by HPTLC and fluorescence scanning densitometry. J. Chromatogr. 290: 113–126, 1984.CrossRefGoogle Scholar
  25. 25.
    Butler, H.T., Coddens, M.E., Khatib, S., Poole, C.F.: Quantitative determination of polycyclic aromatic hydrocarbons in environmental samples by high performance thin-layer chromatography and fluorescence scanning densitometry. J. Chromatogr. Sci. 23: 320–324, 1985.Google Scholar
  26. 26.
    Poole, C.F., Butler, H.T., Coddens, M.E., Khatib, S. and Vandervennet R.: Comparison of methods for separating polcyclic aromatic hydrocarbons by high performance thin-layer chromatography. J. Chromatogr. 302: 149–158, 1984.PubMedCrossRefGoogle Scholar
  27. 27.
    Lee, K.Y., Nurok, D., Zlatkis, A. and Karmen, A.: Simultaneous determination of antiarrhythmia drugs by high performance thin-layer chromatography. J. Chromatogr. 158: 403–410, 1978.PubMedCrossRefGoogle Scholar
  28. 28.
    Ebel, S., Albert, D. and Schaefer, U.: Calibration in TLC/HPTLC using Michaelis-Menten function. Chromatographia 18: 23–27, 1984.CrossRefGoogle Scholar
  29. 29.
    Bethke, H., Santi, W. and Frei, R.W.: Data-pair technique, a new approach to quantitative thin-layer chromatography. J. Chromatogr. Sci. 12: 392–397, 1974.Google Scholar
  30. 30.
    Butler, H.T. and Poole, C.F.: Two-point calibration method applied to fluorescence scanning densitometry and HPTLC. J. Chromatogr. Sci. 21: 385–388, 1983.Google Scholar
  31. 31.
    Funk, W., Kerler, R., Schiller, J. Th., Dammann, V. and Arndt, F.: Prechromatographic derivatization of samples for HPTLC. J. High Resolut. Chromatogr. Chromatogr. Commun. 5: 534–538, 1982.CrossRefGoogle Scholar
  32. 32.
    Oztunc,A.:Fluorimetric determination of acetaminophen and its dansyl derivative. Analyst 107: 585–587, 1982.CrossRefGoogle Scholar
  33. 33.
    Ho, S.S.J., Butler, H.T. and Poole, C.F.: Fluorescence enhancement of polycyclic aromatic hydrocarbons separated on silica gel high performance thin- layer chromatography plates. J. Chromatogr. 281: 330–339, 1983.CrossRefGoogle Scholar
  34. 34.
    Uchiyama, S. and Uchiyama, M.: Thin-layer chromatography-fluorometry of ethoxyquin using Triton X-100. J. Chromatogr. 262: 340–345, 1983.CrossRefGoogle Scholar
  35. 35.
    Prydz, S.: Summary of the state of the art in radiochromatography. Anal. Chem. 45: 2317–2326, 1973.CrossRefGoogle Scholar
  36. 36.
    Touchstone, J.C. and Dobbins, M.F.: Practice of Thin-Layer Chromatography. John Wiley and Sons, New York, 1978, pp. 275–300.Google Scholar
  37. 37.
    Roberts, T.R.: Radiochromatography: The Chromatography and Electrophoresis of Radiolabelled Compounds. Elsevier, Amsterdam, 1978.Google Scholar
  38. 38.
    Filthuth, H.: Radioscanning of TLC. In Advances in Thin Layer Chromatography: Clinical and Environmental Applications, Touchstone, J.C., ed., John Wiley and Sons, New York, 1982, pp. 89–124.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • Colin F. Poole
  • Hal T. Butler
  • Myra E. Coddens
  • Sheila A. Schuette

There are no affiliations available

Personalised recommendations