Skip to main content

Differentiation of Rat Fetal Retina Transplanted to the Occipital Cortex either in Isolation or Together with a Second Transplant of Superior Colliculus to Induce Sprouting of Optic Fibers

  • Conference paper
Neural Transplantation and Regeneration

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

  • 45 Accesses

Abstract

The coordinated development of neurons within the central nervous system is considered to follow an intrinsic, genetically coded series of morphological and biochemical changes during initial phases of growth, but the process of maturation and differentiation seems to be controlled, to some extent, by extrinsic determinants, including precise temporal and spatial interactions with the neurons of other, functionally related, centers (Jacobson 1978). Such interactions involve the establishment of an appropriate complement of afferent fiber inputs that appear to influence the modeling of the dendritic arbor of the postsynaptic cell (Cowan 1970). Similarly, axons arising from these cells must be guided to, and form a functional synaptic contact with, their proper targets (other neurons, muscles, etc.), in order for the cell to completely mature or even survive (Sperry 1963, Gaze, 1970, Cowan 1978).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berg, D.K., Hall, Z. (1975). Increased extrajunctional acetylcholine sensitivity produced by chronic postsynaptic neuromuscular blockade. J. Physiol. 244, 659–666.

    PubMed  CAS  Google Scholar 

  • Björklund, H., Seiger, A., Hoffer, B., Olson, L. (1983). Trophic effects of brain areas on the developing cerebral cortex. I. Growth and histological organization of intraocular grafts. Dev. Brain Res. 6, 131–140.

    Article  Google Scholar 

  • Björklund, A., Stenevi, U. (1979). Reconstruction of nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res. 177, 555–560

    Article  PubMed  Google Scholar 

  • Björklund, A., Stenevi, U., Svendgaard, N.A. (1976). Growth of transplanted monoaminergic neurons into the adult hippocampus along the perforant path. Nature 262, 787–790.

    Article  PubMed  Google Scholar 

  • Black, I.B., Green, S.C. (1974). Inhibition of the biochemical and morphological maturation of adrenergic neurons by nicotine receptor blockade. J. Neurochem. 22, 301–306.

    Article  PubMed  CAS  Google Scholar 

  • Constantine-Paton M., Capranica, R.P. (1976). Axonal guidance of developing optic nerves in frog. I. Anatomy of the projection from transplanted eye primordia. J. Comp. Neur. 170, 17–31.

    Article  PubMed  CAS  Google Scholar 

  • Cowan, W.M. (1970). Anterograde and retrograde transneuronal degeneration in the central and peripheral nervous system. In: Contemporary Research Methods in Neuroanatomy. Nauta, W., Ebkesson, S. (eds.). Berlin: Springer-Verlag, pp. 271–251.

    Google Scholar 

  • Cowan, W.M. (1978). Aspects of neural development. In: International Review of Physiology Neurophysiology. III. Porter, R. (ed.). Baltimore: University Press, pp. 149–189.

    Google Scholar 

  • Cowan, W.M. (1979). Selection and control in neurogenesis. In: The Neurosciences Fourth Study Program. Schmitt, F.O., Worden, F.6. (eds.). Cambridge, MA: MIT Press pp. 59–79.

    Google Scholar 

  • Crain, S. (1977). Synapse formation in neural tissue cultures. In: Cell, Tissue and Organ Cultures in Neurobiology. S, Hertz, L. (eds.). New York: Academic Press, pp. 147–190.

    Google Scholar 

  • Crossland, W.J., Cowan, W.M., Rogers, L.A., Kelly, J.P. (1974). The specification of the retinotectal projection in the chick. J. Comp. Neur. 155, 127–164.

    Article  PubMed  CAS  Google Scholar 

  • Das, G.D. (1974). Transplantation of embryonic tissue in the mammalian brain. I. Growth and differentiation of neuroblasts from various regions of the embryonic brain in the cerebellum of neonate rats. TIT J. Life Sei. 4, 93–124.

    CAS  Google Scholar 

  • Das, G.D., Hailas, B.H., Das, K.G. (1979). Transplantation of neural tissues in the brains of laboratory mammals. Technical details and comments. Experientia 35, 143–153.

    Article  PubMed  CAS  Google Scholar 

  • Das, G.D., Hailas, B.H., Das, K.G. (1980). Transplantation of brain tissue in the brain of rat. I. Growth characteristics of neocortical transplants from embryos of different ages. Am. J. Anat. 158, 135–145.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, D.L., Grafstein, B. (1983). Intraocular tetrodotoxin hinders optic nerve re-generation. Brain Res. 269, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Fifkova, E. (1972). Effect of visual deprivation and light on synapses of the inner plexiform layer. Exp. Neurol. 35, 458–469.

    Article  PubMed  CAS  Google Scholar 

  • Gash, D., Sladek, J.R., Sladek, C. (1979). Development of normal fetal supraoptic neurons grafted into adult hosts with a congenital lack of vasopressin producing neurons. Soc. Neurosci. Abst. 5, 445.

    Google Scholar 

  • Gaze, R.M. (1970). The Formation of Nerve Connections. London/New York: Academic Press, pp. 1–28.

    Google Scholar 

  • Globus, A. (1975). Brain morphology as a function of presynaptic morphology and activity. In: Developmental Neuropsychology of Sensory Deprivation, Riesen, A.H. (ed.). New York: Academic Press, pp. 9–91.

    Google Scholar 

  • Hallas, B.H., Oblinger, M.M., Das, G.D. (1980). Heterotopic neural transplants in the cerebellum of the rat: Their afferents. Brain Res. 196, 242–246.

    Article  PubMed  CAS  Google Scholar 

  • Harris, W.A. (1980a). The effects of eliminating impulse activity on the development of the retino-tectal projection in salamanders. J. Comp. Neur. 194, 303–317.

    Article  PubMed  CAS  Google Scholar 

  • Harris, W.A. (1980b). Regions of the brain influencing the projection of developing optic tracts in the salamander. J. Comp. Neur. 194, 319–333.

    Article  PubMed  CAS  Google Scholar 

  • Harvey, A.R., Lund, R.D. (1979). Neurons in host rat brains which project to tectal transplants. Neurosci. Abst. 5, 627.

    Google Scholar 

  • Hendry, I.A., Campbell, J. (1976). Morphometric analysis of rat superior cervical ganglion after axotomy and nerve growth factor treatment. J. Neurocytol. 5, 351–360.

    Article  PubMed  CAS  Google Scholar 

  • Hibbard, E. (1965). Orientation and directed growth of Mauthner’s cell axons from duplicated vestibular nerve roots. Exp. Neurol. 13, 289–301.

    Article  PubMed  CAS  Google Scholar 

  • Hollyday, M., Hamburger, V. (1976). Reduction of the naturally occurring motor neuron loss by enlargement of the periphery. J. Comp. Neur. 170, 311–320.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, W.F., McLoon, S.C. (1979). Ganglion cell death during normal retinal development in the chick: Comparisons with cell death induced by early target field destruction. Exp. Neurol. 66, 587–601.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, M. (1978). Developmental Neurobiology, 2nd ed. New York/London: Plenum Press.

    Google Scholar 

  • Jacobson, M., Levine, R.L. (1975). Stability of implanted duplicate tectal positional markers serving as target for optic axons in adult frogs. Brain Res. 92, 468–471.

    Article  PubMed  CAS  Google Scholar 

  • Jaeger, C.B., Lund, R.D. (1979). Efferent fibers from transplanted cerebral cortex of rats. Brain Res. 165, 338–342.

    Article  PubMed  CAS  Google Scholar 

  • Jaeger, C.B., Lund, R.D. (1980). Transplantation of embryonic occipital cortex to the brain of newborn rats. Exp. Brain Res. 40, 265–272.

    Article  PubMed  CAS  Google Scholar 

  • Katz, M.J., Lasek, R.J. (1981). Substrate pathway demonstrated by transplanted Mauthner axons. J. Comp. Neurol. 195, 627–641.

    Article  PubMed  CAS  Google Scholar 

  • Lavail, M.M., Hild, W. (1971). Histotypic organization of the rat retina in vitro. Z. Zellforsch. 114, 557–579.

    Article  CAS  Google Scholar 

  • Lewis, E.R., Cotman, C.W. (1980). Mechanisms of septal lamination in the developing hippocampus revealed by outgrowth of fibers from septal implants. I. Positional and temporal factors. Brain Res. 196, 307–330.

    Article  PubMed  CAS  Google Scholar 

  • Lund, R.D. (1978). Developmental and plasticity of the brain: An introduction. New York: Oxford University Press.

    Google Scholar 

  • Matthews, M.A. (1973). Death of the central neuron: An electron microscopic study of thalamic retrograde degeneration following cortical ablation. J. Neurocytol. 2, 265–288.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, M.A. (1981). Transplantation of fetal retina, superior colliculus and lateral geniculate nucleus to host visual cortex. A light and electron microscopic analysis. Soc. Neurosci. ABS. 11th Annual Meeting, p. 466.

    Google Scholar 

  • Matthews, M.A., Cornell, W.J., Alchediak, T. (1982a). Axoplasmic transport inhibition in the developing visual system of the rat. I. Structural changes in the retina and optic nerve with graded doses of intraocular colchicine. Neuroscience 7, 365–384.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, M.A., West, L.C. (1982). Optic fiber development between dual transplants of retina and superior colliculus placed in the occipital cortex. Anat. Embryol. 163, 417–433.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, M.A., West, L., Clarkson, D.B. (1982b). Axoplasmic transport inhibition in the developing visual system of the rat. II. Quantitative analysis of alterations in transport of tritiated Proline or Fucose. Neuroscience 7, 385–404.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, M.A., West, L.C., Riccio, R.V. (1982c). An ultrastructural analysis of the development of fetal rat retina transplanted to the occipital cortex, a site lacking appropriate target neurons for optic fibers. J. Neurocytol. 11, 533–557.

    Article  PubMed  CAS  Google Scholar 

  • McArdle, C.B., Dowling, J.E., Masland, R.H. (1977). Development of outer segments and synapses in the rabbit retina. J. Comp. Neur. 175, 253–274.

    Article  PubMed  CAS  Google Scholar 

  • McCaffery, C.A., Bennett, M.R., Dreher, B. (1982). The survival of neonatal rat retinal ganglion cells in vitro is enhanced in the presence of appropriate parts of the brain. Exp. Brain Res. 48, 377–386.

    Article  PubMed  CAS  Google Scholar 

  • McLoon, S.C., Lund, R.D. (1980a). Identification of cells in retinal transplants which project to host visual centers: A horseradish peroxidase study in rats. Brain Res. 197, 491–495.

    Article  PubMed  CAS  Google Scholar 

  • McLoon, S.C., Lund, R.D. (1980b). Specific projections of retina transplanted to rat brain. Exp. Brain Res. 40, 273–282.

    Article  PubMed  CAS  Google Scholar 

  • McLoon, L.K., McLoon, S.C., Lund, R.D. (1981). Cultured embyronic retinae transplanted to rat brain: Differentiation and formation of projections to host superior colliculus. Brain Res. 226, 15–31.

    Article  PubMed  CAS  Google Scholar 

  • Narayanan, C.H., Narayanan, Y. (1978). Neuronal adjustments in developing nuclear centers of the chick embryo fellowing transplantation of an additional optic primordium. J. Embryol. Exp. Morphol. 44, 53–70.

    PubMed  CAS  Google Scholar 

  • Obata, K. (1977). Development of neuromuscular transmission in culture with a variety of neurons and in the presence of cholinergic substances and tetrodotoxin. Brain Res. 119, 141–153.

    Article  PubMed  CAS  Google Scholar 

  • Oblinger, M.M., Hailas, B.H., Das, G.D. (1980). Neocortical transplants in the cerebellum of the rat: Their afferents and efferents. Brain Res. 189, 228–232.

    Article  PubMed  CAS  Google Scholar 

  • Oh, T.H. (1976). Neurotrophic effects of sciatic nerve extracts on muscle development in culture. Exp. Neurol. 50, 376–386.

    Article  PubMed  CAS  Google Scholar 

  • Oh, T.H., Markelonis, C.J., Reier, P.J., Zalewski, A.A. (1980). Persistence in degenerating sciatic nerve of substances having a trophic influence upon cultured muscle. Exp. Neurol. 67, 646–654.

    Article  PubMed  CAS  Google Scholar 

  • Olson, L., Seiger, A., Hoffer, B., Taylor, D. (1979). Isolated catecholaminergic projections from substantia nigra and locus coeruleus to caudate, hippocampus and cerebral cortex formed by intraocular sequential double brain grafts. Exp. Brain Res. 35, 47–67.

    Article  PubMed  CAS  Google Scholar 

  • Perlow, M.J., Freed, W.J., Hoffer, B.J., Seiger, A., Olson, L., Wyatt, R.J. (1979). Brain grafts reduce motor abnormalities produced by destruction of the nigrostriatal dopamine system. Science 204, 643–646.

    Article  PubMed  CAS  Google Scholar 

  • Ralston, H.J., Chow, K.L. (1973). Synaptic reorganization in the degeneration lateral geniculate nucleus of the rabbit. J. Comp. Neur. 147, 321–350.

    Article  PubMed  Google Scholar 

  • Ranson, S.W. (1914). Transplantation of the spinal ganglion cells. J. Comp. Neur. 24, 547–558.

    Article  Google Scholar 

  • Rubin, L., Scheutz, S.M., Fischbach, G.D. (1979). Accumulation of acetylcholinesterase at newly formed nerve-muscle synapses. Dev. Biol. 69, 46–58.

    Article  PubMed  CAS  Google Scholar 

  • Saltykow, S. (1905). Versuche über gehirnplantation zugleich einbeitrag zur Kenntniss der Borgange an den zelligen gehirnelementen. Arch. Psych. 40, 320.

    Article  Google Scholar 

  • Schmidt, J.T., Edwards, D.L. (1983). Activity sharpens the map during the regeneration of the retino-tectal projection in goldfish. Brain Res. 269, 29–39.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, J.T.M., Edwards, D.L., Stuermer, C. (1983). The reestablishment of synaptic transmission by regenerating optic axons in goldfish: Time course and effects of blocking activity by intraocular injection of tetrodotoxin. Brain Res. 269, 15–27.

    Article  PubMed  CAS  Google Scholar 

  • Silver, J., Sidman, R.L. (1980). A mechanism for the guidance and topographic patterning of retinal ganglion cell axons. J. Comp. Neur. 189, 101–111.

    Article  PubMed  CAS  Google Scholar 

  • Smalheiser, N.R., Crain, S.M., Bornstein, M.B. (1981). Development of ganglion cells and their axons in organized cultures of fetal mouse retinal explants. Brain Res. 204, 159–178.

    Article  PubMed  CAS  Google Scholar 

  • Smith, B.H., Kreutzberg, G.W. (1977). Neuron-target cell interactions. NRP Bull. 14, 209–453.

    Google Scholar 

  • Sosula, L., Glow, P.H. (1970). A quantitative ultrastructural study of the inner plexiform layer of the rat retina. J. Comp. Neur. 140, 439–478.

    Article  PubMed  CAS  Google Scholar 

  • Sperry, R.W. (1963). Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc. Natl. Acad. Sei. USA 50, 703–710.

    Article  CAS  Google Scholar 

  • Thorpe, P.A., Blakemore, C. (1975). Evidence for a loss of afferent axons in the visual cortex of monocularly deprived cats. Neurosci. Let. 1, 271–276.

    Article  CAS  Google Scholar 

  • Weidman, T.A., Kuwabara, T. (1968). Postnatal development of the rat retina. Arch. Ophthalmol. 79, 470–484.

    PubMed  CAS  Google Scholar 

  • Weidman, T.A., Kuwabara, T. (1969). Development of the rat retina. Invest. Ophthalmol. 8, 60 - 69.

    PubMed  CAS  Google Scholar 

  • Werblin, F.S., Dowling, J.E. (1969). Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J. Neurophysiol. 32, 339–355.

    PubMed  CAS  Google Scholar 

  • Woodward, D.J., Seiger, A., Olson, L., Hoffer, B.J. (1977). Intrinsic and extrinsic determinants of dendritic development as revealed by Golgi studies of cerebellar and hippocampal transplants in oculo. Exp. Neurol. 57, 984–998.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, M.G., (1975). Topographic polarity of the optic tectum studied by reimplantation of the tectal tissue in adult goldfish. Cold Spring Harbor Symp. Quant. Biol. 40, 503–519.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this paper

Cite this paper

Matthews, M.A. (1986). Differentiation of Rat Fetal Retina Transplanted to the Occipital Cortex either in Isolation or Together with a Second Transplant of Superior Colliculus to Induce Sprouting of Optic Fibers. In: Das, G.D., Wallace, R.B. (eds) Neural Transplantation and Regeneration. Proceedings in Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4846-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4846-0_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9327-9

  • Online ISBN: 978-1-4612-4846-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics