Skip to main content

On the Absorbtion of Sound by Turbulence and Other Hydrodynamic Flows

  • Conference paper
  • 355 Accesses

Summary

The dissipation of acoustic energy which occurs when sound generates vorticity at the boundaries of a fluid or propagates across a field of turbulence is examined. Vorticity generation occurs typically during scattering or diffraction by surfaces with corners or edges, and an understanding of the consequent attenuation is important in the design of mufflers and other devices used for suppressing acoustic and mechanical vibrations. The rate of dissipation is generally a nonlinear function of the acoustic intensity, but becomes linear and significantly greater in the presence of a mean flow.

When sound propagates through turbulence it is partly scattered and partly absorbed. Lighthill’s (1953) theory of scattering is extended to include the possibility of acoustic absorbtion by a direct transfer of energy to the turbulent motions. A similar but greatly enhanced level of absorbtion takes place when sound propagates in turbulent pipe flow. The energy transfer occurs principally in the acoustic momentum and thermal boundary layers at the walls, whose properties are subject to the modifying influences of turbulence convection. This is discussed in relation to experimental data of Ronneberger and Ahrens (1977).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahrens, C. and Ronneberger, D. Acustica 25 (1971), 150–157.

    Google Scholar 

  2. Ashley, H. and Landahl, M. Aerodynamics of Wings and Bodies, Reading: Addison-Wesley, 1965.

    MATH  Google Scholar 

  3. Batchelor, G. K. Naval Hydrodynamics (Chapter 16), Washington, D. C.: National Acad. Sei. Pub. 515 of Nat. Res. Counc., 1957.

    Google Scholar 

  4. Batchelor, G. K. An Introduction to Fluid Dynamics, C.U.P., 1967.

    Google Scholar 

  5. Bechert, D. W. Sound Absorbtion Caused by Vorticity Shedding, Demonstrated With a Jet Flow, ALAA Paper 79–0575, 1979.

    Google Scholar 

  6. Bechert, D. W. “Sound Sinks in Flows, a Real Possibility?” In Mechanics of Sound Generation in Flows. Ed. E. A. Müller. New York: Springer, 1979.

    Google Scholar 

  7. Blom, J. An Experimental Determination of the Turbulent Prandtl Number in a Temperature Boundary Layer. Doctoral thesis, Eindhoven University of Technology, 1970.

    Google Scholar 

  8. Bradshaw, P. Ann. Rev. Fluid Mech. 9 (1977), 33–54.

    Article  Google Scholar 

  9. Brown, E. H. and Clifford, S. F. J. Acoust. Soc. Am. 60 (1976), 788–794.

    Article  Google Scholar 

  10. Crighton, D. G. Proc. Camb. Phil. Soc., 65 (1969), 557–566.

    Article  MATH  Google Scholar 

  11. Crow, S. C. Phys. Fluids, 10 (1967), 1587–89.

    Article  Google Scholar 

  12. Crow, S. C. J. Fluid Mech. 87 (1969), 529–563.

    Article  Google Scholar 

  13. Davies, H. G. and Ffowcs Williams, J. E. J. Fluid Mech. 32 (1968), 765–778.

    Article  MATH  Google Scholar 

  14. Dean, P. D. and Tester, B. J. Duct Wall Impedance Control as an Advanced Concept for Acoustic Suppression, NASA CR-134998, 1975.

    Google Scholar 

  15. Ffowcs Williams, J. E. and Howe, M. S. J. Fluid Mech. 58 (1973), 461–480.

    Article  MathSciNet  MATH  Google Scholar 

  16. Guedel, A. Scattering of an Acoustic Field by a Free-Jet Shear Layer. AIAA Paper 83–0698, 1983.

    Google Scholar 

  17. Hinze, J. O. Turbulence, New York: McGraw-Hill, 1975.

    Google Scholar 

  18. Howe, M. S. J. Fluid Mech. 45 (1971), 785–804.

    Article  MATH  Google Scholar 

  19. Howe, M. S. J. Fluid Mech. 91 (1979), 209–229.

    Article  MATH  Google Scholar 

  20. Howe, M. S. Proc. R. Soc. A366 (1979), 205–223.

    Article  MathSciNet  MATH  Google Scholar 

  21. Howe, M. S. J. Fluid Mech. 94 (1979), 729–744.

    Article  MATH  Google Scholar 

  22. Howe, M. S. Proc. R. Soc. A370 (1980), 523–544.

    Google Scholar 

  23. Howe, M. S. Proc. R. Soc. A314 (1981), 543–568.

    Google Scholar 

  24. Ingard, U. and Singhai, V. K. J. Acoust. Soc. Am. 55 (1974), 535–538.

    Article  Google Scholar 

  25. Jones, D. S. J. Inst. Math. Applies. 9 (1972), 114–122.

    Article  MATH  Google Scholar 

  26. Kambe, T. and Mya Oo, U. J. Phys. Soc. Japan. 50 (1981), 3507–16.

    Article  Google Scholar 

  27. Korman, M. S. and Beyer, R. T. J. Acoust. Soc. Am. 67 (1980), 1980–87.

    Article  Google Scholar 

  28. Kraichnan, R. H. J. Acoust Soc. Am. 25 (1953), 1096–1104.

    Article  MathSciNet  Google Scholar 

  29. Lighthill, M. J. Proc. R. Soc. A211 (1952), 564–587.

    Article  MathSciNet  MATH  Google Scholar 

  30. Lighthill, M. Proc. Camb. Phil. Soc. 49 (1953), 531–551.

    Article  MathSciNet  MATH  Google Scholar 

  31. Lighthill, M. J. Fluid Mech. 91 (1979), 253–317.

    Article  MathSciNet  MATH  Google Scholar 

  32. Lyon, R. H. J. Acoust. Soc. Am. 31 (1959), 1176–82.

    Article  MathSciNet  Google Scholar 

  33. Noir, D. T. and George, A. R. J. Fluid Mech. 86 (1978), 593–608.

    Article  MATH  Google Scholar 

  34. Rienstra, S. W. J. Fluid Mech. 108 (1981), 443–460.

    Article  MathSciNet  MATH  Google Scholar 

  35. Ronneberger, D. and Ahrens, C. D. J. Fluid Mech. 83 (1977), 433–464

    Article  Google Scholar 

  36. Ross, R. et al. Acoustic Wave Propagation Through the Shear Layer of the DNW Large Open Jet Wind Tunnel. AIAA Paper 83–0699, 1983.

    Google Scholar 

  37. Salikuddin, M. et al. Refinement and Application of Acoustic Impulse Technique to Study Nozzle Transmission Characteristics. NASA CR- 3656, 1983.

    Google Scholar 

  38. Stratonovich, R. L. Topics in the Theory of Random Noise, Vol. 1. New York: Gordon and Breach, 1963.

    Google Scholar 

  39. Walker, W. M. and Reising, G.F.S. Chem. Process. Engng. 49 (1968), 95–103.

    Google Scholar 

  40. Welsh, M. C., Stokes, A. N., and Parker, R. Flow-Resonant Sound Interaction in a Duct Containing a Plate: Part 1. Semicircular Leading Edge. Submitted to J. Sound Vib., 1983.

    Google Scholar 

  41. Ver, I. L. “Perforated Baffles Prevent Flow-Induced Acoustic Resonances in Heat Exchangers.” In Fortschritte der Akustik (FASE/ DAGA’82), Vol. 1, Gottingen, 1982, pp. 531–534.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this paper

Cite this paper

Howe, M.S. (1986). On the Absorbtion of Sound by Turbulence and Other Hydrodynamic Flows. In: Krothapalli, A., Smith, C.A. (eds) Recent Advances in Aeroacoustics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4840-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4840-8_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9324-8

  • Online ISBN: 978-1-4612-4840-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics