Skip to main content

Part of the book series: Experimental and Clinical Neuroscience ((ECN))

Abstract

What are the major constraints that affect the water balance of insects? Most insects live in the terrestrial environment and under most conditions (loosely where the relative humidity is less than 98%) this environment is a drying one (Edney, 1977). Insects, because they are very small relative to most other terrestrial organisms, have a higher surface area/volume ratio. This suggests that particularly for them, life on land poses acute problems of maintaining water content; they seem certain to be prone to desiccation. On the other hand, insects living in fresh water or water whose osmotic concentration is less than that of their haemolymph are likely to face exactly the opposite problem - they have to cope with a constant surplus of water as a result of osmotic influx. Understandably, then virtually all accounts of insect osmoregulation have concentrated on adaptations for water conservation in terrestrial insects and for water elimination in insects living in dilute waters. Of the systems that allow insects to cope with these problems we are here mainly concerned with the excretory system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, R. McN. (1971). Size and Shape. Arnold, London.

    Google Scholar 

  • Altman, G. (1956) Die Regulation des Wasserhaushaltes der Honigbiene. Insectes soc. 3, 33–40.

    Article  Google Scholar 

  • Berridge, M.J. (1975) The physiology of excretion in the cotton stainer, Dysdercus fasciatus Signoret. IV. Hormonal control of excretion. J. exp. Biol. 44, 553–566.

    Google Scholar 

  • Bertsch, A. (1984) Foraging in male bumblebees (Bombus lucorum L.): maximizing energy or minimizing water load? Oecologia 62, 325–336.

    Article  Google Scholar 

  • Bradley, T.J. & Phillips, J.E. (1977) The location and mechanism of hyperosmotic fluid secretion in the rectum of the saline-water mosquito, Aedes taeniorhynchus. J. exp. Biol. 66, 111–126.

    PubMed  CAS  Google Scholar 

  • Cazal, M. & Girardie, A. (1968). Controle humoral de l’equilibre hydrique chez Locusta migratoria migratorioides. J. Insect Physiol. 14, 655–668.

    Article  Google Scholar 

  • Cockbain, A.J. (1961) Water relationships of Aphis fabae during tethered flight. J. exp. Biol. 38, 175–180.

    CAS  Google Scholar 

  • Dores, R.M., Dallmann, S.H. & Herman, W.S. (1979) The regulation of post-eclosion and post-feeding diuresis in the monarch butterfly, Danaus plexippus. J. Insect Physiol. 25, 895–901.

    Article  CAS  Google Scholar 

  • Edney, E.B. (1977) Water Balance in Land Arthropods. Springer, Heidelberg.

    Google Scholar 

  • Gee, J.D. (1976) Active transport of sodium by the Malpighian tubules of the tsetse fly, Glossina morsitans. J. exp. Biol. 64, 357–368.

    PubMed  CAS  Google Scholar 

  • Gringorten, J.L. & Friend, W.G. (1979) Haemolymph volume changes in Rhodnius prolixus during flight. J. exp. Biol. 83, 325–333.

    Google Scholar 

  • Kestler, P. (1985) Respiration and respiratory water loss. In Environmental Physiology and Biochemistry (ed. K.H. Hoffmann ). Springer, Heidelberg.

    Google Scholar 

  • Knowles, G. (1976) The action of the excretory apparatus of Calliphora vomitoria in handling injected sugar solution. J. exp. Biol. 64, 131–140.

    PubMed  CAS  Google Scholar 

  • Maddrell, S.H.P. (1962) A diuretic hormone in Rhodnius prolixus Stal. Nature, Lond. 194, 605–606.

    Article  Google Scholar 

  • Maddrell, S.H.P. (1980) The control of water relations in insects. In Insect Biology in the Future (eds. D.S. Smith & M. Locke ). Academic Press, New York.

    Google Scholar 

  • Maddrell, S.H.P. (1981) The functional design of the insect excretory system. J. exp. Biol. 90, 1–15.

    Google Scholar 

  • Maddrell, S.H.P. (1982) Insects: small size and osmoregulation. In A Companion to Animal Physiology (eds. C.R. Taylor, K. Johansen & L. Bolis ). Cambridge University Press, Cambridge.

    Google Scholar 

  • Maddrell, S.H.P. and Phillips, J.E. (1978) Induction of sulphate transport and hormonal control of fluid secretion by Malpighian tubules of larvae of the mosquiteo, Aedes taeniorhynchus. J. exp. Biol. 75, 133–145.

    CAS  Google Scholar 

  • Mills, R.R. (1967) Hormonal control of excretion in the American cockroach. I. Release of a diuretic hormone from the terminal abdominal ganglion. J. exp. Biol. 46, 35–41.

    CAS  Google Scholar 

  • Mordue, W. (1969) Hormonal control of Malpighian tubules and rectal function in the desert locust Schistocerca gregaria. J. Insect Physiol. 15, 273–285.

    Article  PubMed  CAS  Google Scholar 

  • Nicolson, S.W. (1976) The hormonal control of diuresis in the Cabbage white butterfly, Pieris brassicae. J. exp. Biol. 65, 565–575.

    PubMed  CAS  Google Scholar 

  • Nicolson, S.W. and Hanrahan, S.A. (1986) Diuresis in a desert beetle? Hormonal control of the Malpighian tubules of Onymacris plana (Coleoptera, Tenebrionidae). J. Comp. Physiol. B 156, 407–413.

    Article  CAS  Google Scholar 

  • Nicolson, S.W. and Louw, G.N. (1982) Simultaneous measurement of evaporative water loss, oxygen consumption and thoracic temperature during flight in a carpenter bee. J. exp. Zool. 222, 287–296.

    Article  Google Scholar 

  • Nijhout, H.F. and Carrow, G.M. (1978) Diuresis after a blood-meal in female Anopheles freeborni. J. Insect Physiol. 24, 293–298.

    Article  Google Scholar 

  • Nunez, J.A. (1956) Untersuchungen uber die Regelung des Wasserhaushaltes bei Anisotarsus cupripennis Germ. Z. vergl. Physiol. 38, 341–354.

    Article  Google Scholar 

  • O’Donnell, M.J., Maddrell, S.H.P. & Gardiner, B.O.C. (1984) Passage of solutes through walls of Malpighian tubules of Rhodnius by paracellular and transcellular routes. Am. J. Physiol. 264, R759–R769.

    Google Scholar 

  • Pasedach-Poeverlein, K. (1941) Uber das “Spritzen” der Bienen und uber die Konzentrationsanderung ihres Honigblaseninhalts. Z. vergl. Physiol. 28, 197–210.

    Article  Google Scholar 

  • Phillips, J.E. (1964) Rectal absorption in the desert locust, Schistocerca gregaria Forskal. III. The nature of the excretory process. J. exp. Biol. 41, 69–80.

    PubMed  CAS  Google Scholar 

  • Phillips, J.E. (1969) Osmotic regulation and rectal absorption in the blowfly, Calliphora erythrocephala. Can. J. Zool. 47, 851–863.

    Article  CAS  Google Scholar 

  • Phillips, J., Spring, J., Hanrahan, J., Mordue, W. & Meredith, J. (1982) Hormonal control of salt reabsorption by the excretory system of an insect. Isolation of a new protein. In Neurosecretion: Molecules, Cells, Systems (eds. D.S. Farner & K. Lederis ), Plenum, New York.

    Google Scholar 

  • Pilcher, D.E.M. (1970) Hormonal control of the Malpighian tubules of the stick insect, Carausius morosus. J. exp. Biol. 52, 653–665.

    PubMed  CAS  Google Scholar 

  • Ramsay, J.A. (1950) Osmotic regulation in mosquito larvae. J. exp. Biol. 27, 145–157.

    PubMed  CAS  Google Scholar 

  • Ryerse, J.S. (1978) Developmental changes in Malpighian tubule fluid transport. J. Insect Physiol. 24, 315–319.

    Article  Google Scholar 

  • Schwartz, L.M. and Reynolds, S.E. (1979) Fluid transport in Calliphora Malpighian tubules: a diuretic hormone from the thoracic ganglion and abdominal nerves. J. Insect Physiol. 25, 847–854.

    Article  CAS  Google Scholar 

  • Weis-Fogh, T. (1964) Diffusion in insect wing muscle, the most active tissue known. J. exp. Biol. 41, 229–256.

    PubMed  CAS  Google Scholar 

  • Wigglesworth, V.B. (1953) The Principles of Insect Physiology, 5th edition. Methuen, London.

    Google Scholar 

  • Williams, S.C. and Beyenbach, K.W. (1983) Differential effects of secretagogues on Na and K secretion in the Malpighian tubules of Aedes aegypti (L.). J. comp. Physiol. 149, 511–517.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 The Humana Press Inc.

About this chapter

Cite this chapter

Maddrell, S. (1986). Hormonal Control of Diuresis in Insects. In: Bořkovec, A.B., Gelman, D.B. (eds) Insect Neurochemistry and Neurophysiology · 1986. Experimental and Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-4612-4832-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4832-3_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-9181-7

  • Online ISBN: 978-1-4612-4832-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics