EEG, EEG Power Spectra, and Behavioral Correlates of Opioids and Other Psychoactive Agents

  • Gerald A. Young
  • Oksoon Hong
  • Naim Khazan


The discovery of electrical potentials of the brain is thought to have been made by Caton (1875), who presented the results of his research with rabbits and monkeys to the British Medical Association in Edinburgh. Half a century later in Jena, Austria, Hans Berger (1929) discovered human brain waves and, hence, Berger is recognized as the father of electroencephalography, the recording of oscillations in the potential differences between two points in the brain (Berger, 1937).


Spectral Power Blood Ethanol Level Kappa Opioid Agonist Acute Ethanol Administration Related Power Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benignus, V. A. (1984) EEG as a cross species indicator of neurotoxicity. Neurobehav. Toxicol. Teratol. 6, 473–783.PubMedGoogle Scholar
  2. Berger, H. (1929) Uber da elektrenkephalogramm des meschen. Arch. Psychiat. Nervenkrankh. 87, 527–570.CrossRefGoogle Scholar
  3. Berger, H. (1937) On the electroencephalogram of man. Twelfth report. Arch. Psychiat. Nervenkrankh. 106, 165–187.CrossRefGoogle Scholar
  4. Brazier, M. A. B. (1964) The effect of drugs on the electroencephalogram of man. Clin. Pharmacol. Ther. 5, 102–116.PubMedGoogle Scholar
  5. Bronzino, J. D., Brusseau, J. N., Stern, W. C., and Morgane, P. J. (1973) Power density spectra of cortical EEG of the cat in sleep and waking. Electroenceph. Clin. Neunrphysiol. 35, 187–191.CrossRefGoogle Scholar
  6. Bronzino, J. D., Kelly, M. L., Cordova, C., Gudz, M., Oley, N., Stern, W. C., and Morgane, P. J. (1982) Amplitude and spectral quantification of the effects of morphine on the cortical EEG of the rat. Electroenceph. Clin. Neurophysiol. 53, 14–26.PubMedCrossRefGoogle Scholar
  7. Buonamici, M., Young, G. A., and Khazan, N. (1982) Effects of acute △9-THC administration on EEG and EEG power spectra in the rat. Neuropharmacology 21, 825–829.PubMedCrossRefGoogle Scholar
  8. Caton, R. (1875) The electric currents of the brain. Br. Med. J. 2, 278.Google Scholar
  9. Colasanti, B. and Khazan, N. (1971) Changes in EEG voltage output of the sleep-awake cycle in response to tetrahydrocannabinols in the rat. Pharmacologist 13, 246.Google Scholar
  10. Cooley, J. W. and Tukey, J. W. (1965) An algorithm for machine calculation of the complex Fourier series. Math. Comput. 19, 297–301.CrossRefGoogle Scholar
  11. Cowan, A., Geller, E. B., and Adler, M. W. (1979) Classification of opioids on the basis of change in seizure threshold in rats. Science 206, 465–467.PubMedCrossRefGoogle Scholar
  12. Depoortere, H., Decobert, M., and Honorie, L. (1983) Drug effects on the EEG of various species of laboratory animals. Neuropsychobiology 9, 244–249.PubMedCrossRefGoogle Scholar
  13. Dolce, G. and Decker, H. (1972) The effects of ethanol on cortical and subcortical electrical activity in cats. Res. Commun. Chem. Path. Pharmacol. 3, 523–534.Google Scholar
  14. Fink, M. (1964) A selected bibliography of electroencephalography in human psychopharmacology, 1951–1962. Electroencephal. Clin. Neurophysiol. (suppl. 23 ).Google Scholar
  15. Fink, M. and Irwin, P. (1980a) EEG and behavioral profile of flutroline (CP–36,584), a novel antipsychotic drug. Psychopharmacology 72, 67–71.PubMedCrossRefGoogle Scholar
  16. Fink, M. and Irwin, P. (1980b) EEG and behavioral effects of pirenzepine in normal volunteers. Scan. J. Gasroenterol. (suppl.) 15, 39–46.CrossRefGoogle Scholar
  17. Fink, M., Irwin, P., Gastpar, M., and DeRitter, J. J. (1977) EEG, blood level, and behavioral effects of the antidepressant mianserin (ORG GB-94). Psychopharmacology 54, 249–254.PubMedCrossRefGoogle Scholar
  18. Fink, M., Shapiro, D. M., Hickman, C, and Itil, T. (1958) Digital Computer EEG Analyses in Psychopharmacology, in Computers and Electronic Devices in Psychiatry ( Kline, N. and Laska, E., eds.) Grune and Stratton, New York.Google Scholar
  19. Frankenheim, J. (1982) Effects of antidepressants and related drugs on the quantitatively analyzed EEGs of beagle dogs. Drug Dev. Res. 2, 197–213.CrossRefGoogle Scholar
  20. Freye, E., Hartung, E., and Schenk, G. K. (1983) Bremazocine: An opiate that induces sedation and analgesia without respiratory depression. Anesth. Analg. 62, 483–488.PubMedCrossRefGoogle Scholar
  21. Freye, E., Schenk, G. K., and Hartung, E. (1982) Naloxone-resistant EEG slowing induced by the synthetic opioid peptide FK 33–824 in the 4th cerebral ventricle of the dog. EEG EMG 13, 129–132.PubMedGoogle Scholar
  22. Fujimori, M. and Himwich, H. E. (1973) △9-Tetrahydrocannabinol and the sleep-wakefulness cycle in rabbits. Physiol. Behav. 11, 291–295.Google Scholar
  23. Fujimori, M., Trusty, D. M., and Himwich, H. E. (1973) △9-Tetrahydrocannabinol: Electroencephalographic changes and autonomic responses in the rabbit. Life Sci. 12, 553–563.Google Scholar
  24. Gehrmann, J. E. and Killam, K. F., Jr. (1975) EEG Changes Following the Administration of Sedative-Hypnotic Drugs, in Hypnotics: Methods of Development and Evaluation ( Kagan, F., Harwood, T., Rickels, K., Rudzik, A. D., and Sorer, H., eds.) Spectrum, New York.Google Scholar
  25. Gehrmann, J. E. and Killam, K. F., Jr. (1976) Assessment of CNS drug activity in rhesus monkevs by analysis of the EEG. Fed. Proc. Fed. Amer. Soc. Exp. Biol. 35, 2258–2263.Google Scholar
  26. Gehrmann, J. E. and Killam, K. F., Jr. (1978) Studies of central functional equivalence. I. Time varying distribution of power in discrete frequency bands of the EEG as a function of drug exposure. Neuropharmacology 17, 747–759.PubMedCrossRefGoogle Scholar
  27. Gibbs, F. A. and Maltby, G. L. (1943) Effects on electrical activity of cortex of certain depressant and stimulant drugs-barbiturates, morphine, caffeine, benzedrine and adrenalin. J. Pharmacol. Exp. Ther. 78, 1–10.Google Scholar
  28. Gilbert, P. E. and Martin, W. R. (1976) The effects of morphine and nalorphine-like drugs in the nondependent, morphine–dependent and cyclazocine-dependent chronic spinal dog. J. Pharmacol. Exp. Ther. 198, 66–82.PubMedGoogle Scholar
  29. Gitlow, S. E., Bentkover, S. H., Dziedzic, S. W., and Khazan, N. (1973) Persistence of abnormal REM sleep response to ethanol as a result of previous ethanol ingestion. Psychopharmacologia 33, 135–140.PubMedCrossRefGoogle Scholar
  30. Grass, A. M. and Gibbs, F. A. (1938) Fourier transform of the electroencephalogram. J. Neurophysiol. 29, 306–310.Google Scholar
  31. Heath, R. E., Fitzjarrell, A. T., Frontana, C. J., and Garey, R. E. (1980) Cannabis sativa: Effects on brain function and ultrastructure in rhesus monkeys. Biol. Psychiat. 15, 657–690.PubMedGoogle Scholar
  32. Hockman, C. H., Perrin, R. G., and Kalant, H. (1971) Electroencephalographs: and behavioral alterations produced by △1-tetrahydrocannabinol. Science 172, 968–970.PubMedCrossRefGoogle Scholar
  33. Horsey, W. J. and Akert, K. (1953) The influence of ethylalcohol on the spontaneous electrical activity of the cerebral cortex and subcortical structures of the cat. Q. J. Stud. Alcohol 14, 363–377.PubMedGoogle Scholar
  34. Itil, T. M. (1961) Die Veranderungen der Pentothal-Reaktion im Elecktroencephalogramm Bie Psychosen Unter der Behandlung mit Psychotropen Drogen, in Third World Congress of Psychiatry University of Toronto Press, Toronto, Canada.Google Scholar
  35. Itil, T. M. (1968) Electroencephalography and Pharmacopsychiatry, in Clinical Psychopharmacology, Modern Problems in Pharmacopsychiatry ( Freyhan, F. A., Petrolowitsch, N., and Pichot, P. E., eds.) Karger, Basel, New York.Google Scholar
  36. Itil, T. M. (1969) Anticholinergic drug induced sleep-like EEG pattern in man. Psychophannacologia 14, 383–393.CrossRefGoogle Scholar
  37. Itil, T. M. (1971) Quantitative Pharmaco-Electroencephalography in Assessing New Anti-Anxiety Agents, in Advances in Neuro-Psychopharmacology ( Vinar, O., Votava, Z., and Bradley, P. B., eds.) North-Holland, Amsterdam.Google Scholar
  38. Itil, T. M., Menoh, G. N., and Itil, K. Z. (1982) Computer EEG drug data base in psychoharmacology and in drug development. Psychopharmacol. Bull. 18, 165–172.PubMedGoogle Scholar
  39. Itil, T. M., Polvan, N., and Hsu, W. (1972) Clinical and EEG effects of GB-94, a tetracyclic antidepressant (EEG model in discovery of a new psychotropic drug). Curr. Ther. Res. 14, 395–413.PubMedGoogle Scholar
  40. Itil, T. M., Gannon, P., Hsu, W., and Klingenborg, H. (1970) Digital computer analyzed sleep and resting EEG during haloperidol treatment. Am. J. Psychiat. 127, 462–471.PubMedGoogle Scholar
  41. Itil, T. M., Shapiro, D., Schneider, J. J., and Francis, I. B. (1981) Computerized EEG as a predictor of drug response in treatment resistant schizophrenics. J. Nerv. Men. Dis. 169, 629–637.CrossRefGoogle Scholar
  42. Itil, T. M., Reisberg, B., Patterson, C., Amin, A., Wadud, A., and Herrman, W. M. (1978) Pipotiazine palmitate, a long-acting neuroleptic: Clinical and computerized EEG effects. Curr. Ther. Res. 24, 689–707.Google Scholar
  43. Itil, T. M., Seaman, P. S., Huque, M., Mukhopadhyay, S., Blasucci, D., Tat Ng, K., and Ciccone, P. E. (1977) The clinical and quantitative EEG effects and plasma levels of fenobam (McN-3377) in subjects with anxietv: An open rising dose tolerance and efficacv study. Curr. Ther. Res. 24, 708–724.Google Scholar
  44. Kareti, S., Moreton, J. E., and Khazan, N. (1980) Effects of buprenorphine, a new narcotic agonist-antagonist analgesic on the EEG, power spectrum and behavior in the rat. Neuropharmacology 19, 195–201.PubMedCrossRefGoogle Scholar
  45. Kay, D. C. (1975) Human sleep and EEG through a cycle of methadone dependence. Electroenceph. Clin. Neurophysiol. 38, 35–43.PubMedCrossRefGoogle Scholar
  46. Khazan, N. (1975) The Implication and Significance of EEG and Sleep– Awake Activity in the Study of Experimental Drug Dependence on Morphine, in Methods in Narcotic Research (Modem Pharmacology– Toxicology) ( Ehrenpreis, S. and Neidle, A., eds.) Marcel Dekker, New York.Google Scholar
  47. Khazan, N. and Young. G. A. (1980) Use of Neurophysiology in the Study of Drugs and Chemicals, in The Effects of Foods and Drugs on the Development and Function of the Nervous System: Methods for Predicting Toxicity (Gryder, R. M. and Frankos, V. H. eds.) HHS publication No. (FDA) 80 - 1076. Superintendent of Documents, US Government Printing Office, Washington, DC.Google Scholar
  48. Khazan, N., Weeks, J. R., and Schroeder, L. A. (1967) Electroencephalographs, electromyographic and behavioral correlates during a cycle of self-maintained morphine addiction in the rat. J. Pharmacol. Exp. Ther. 155, 521–531.PubMedGoogle Scholar
  49. Khazan, N., Young, G. A., El-Fakahany, E. E., Hong, O., and Calligaro, D. (1984) Sigma receptors mediate the psychotomimetic effects of N-allylnormetazocine (SKF-10,047), but not its opioid agonistic-antagonistic properties. Neuropharmacology 23, 983–987.PubMedCrossRefGoogle Scholar
  50. Laurian, S., Lee, P. K., Baumann, P., Perey, M., and Gaillard, J. M. (1981) Relationship between plasma-levels of chlorpromazine and effects on EEG and evoked potentials in healthy volunteers. Pharmacopsychiatria 14, 199–204.PubMedCrossRefGoogle Scholar
  51. Lipparini, F., Scotti de Carolis, A., and Longo, V. G. (1969) A neuropharmacology investigation of some transtetrahydrocannabinol derivatives. Physiol. Behav. 4, 527–532.CrossRefGoogle Scholar
  52. Lord, J. A. H., Waterfield, A. A., Hughes, J., and Kosterlitz, H. W. (1977) Endogenous opioid peptides: Multiple agonists and receptors. Nature (Lond.) 267, 495–499.CrossRefGoogle Scholar
  53. Lukas, S. E., Moreton, J. E., and Khazan, N. (1982) Differential electroencephalographic and behavioral cross-tolerance to morphine and methadone in the 1-α-acetylmethadol (LAAM)–maintained rat. J. Pharmacol. Exp. Ther. 220, 561–567.PubMedGoogle Scholar
  54. Martin, W. R., Eades, C. G., Thompson, J. A., Huppler, R. E., and Gilbert, P. E. (1976) The effects of morphine- and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. J. Pharmacol. Exp. Ther. 197, 517–532.PubMedGoogle Scholar
  55. Martinez, J. E., Stadnicki, S. W., and Schaeppi, U. H. (1972) △9-Tetrahydrocannabinol: Effects on EEG and behavior in rhesus monkeys. Life Sci. 11, 643–651.Google Scholar
  56. Masur, J. and Khazan, N. (1970) Induction by Cannabis sativa (marijuana) of rhythmic spike discharges overriding REM sleep electrocor– ticogram in the rat. Life Sci. 9, 1275–1280.CrossRefGoogle Scholar
  57. Matejcek, M. (1978) Methodological Consideration in Pharmaco-Encephalography, in Neuropsychophannacology ( Keniker, P., Radauco-Thomas, C., and Villeneuve, A., eds.) Pergamon, New York.Google Scholar
  58. Matejcek, M., Neff, G., Abt, K., and Wehrli, W. (1983) Pharmaco-EEG and psychometric study of the effect of single doses of temazepam and nitrazepam. Neuropsychobiology 9, 52–65.PubMedCrossRefGoogle Scholar
  59. McCarren, M. and Eccles, C. U. (1983) Neonatal lead exposure in rats II. Effects on the hippocampal afterdischarge. Neurobehav. Toxicol. Teratol. 5, 533–540.PubMedGoogle Scholar
  60. McCarren, M., Young, G. A., and Eccles, C. U. (1984) Spectral analysis of kindled hippocampal afterdischarges in lead-treated rats. Epilepsia 25, 53–60.PubMedCrossRefGoogle Scholar
  61. Moreley, B. J. and Bradley, R. J. (1977) Spectral analysis of mouse EEG after the administration of N,N-dimethyltryptamine. Biol. Psychiat. 12, 757–769.Google Scholar
  62. Moreton, J. E. and Davis, W. M. (1973) Electroencephalographs study of the effects of tetrahydrocannabinols on sleep in the rat. Neuropharmacology 12, 897–907.PubMedCrossRefGoogle Scholar
  63. Niedermeyer, E. (1982) The EEG Signal: Polarity and Field Determination, in Electroencephalography: Basic Principles, Clinical Applications and Related Fields ( Niedermeyer, E. and Lopes da Silva, F., eds.) Urban and Schwarzenberg, Baltimore.Google Scholar
  64. Perrin, R. G., Hockman, C. H., Kalant, H., and Livingston, K. E. (1974) Acute effects of ethanol on spontaneous and auditory evoked electrical activity in cat brain. Electroenceph. Clin. Neurophysiol. 36, 19–31.PubMedCrossRefGoogle Scholar
  65. Pickworth, W. B. and Sharpe, L. G. (1979) EEG-behavioral dissociation after morphine- and cyclazocine-like drugs in the dog: Further evidence for two opiate receptors. Neuropharmacology 18, 617–622.PubMedCrossRefGoogle Scholar
  66. Pickworth, W. B., Sharpe, L. G., and Gupta, V. N. (1982) Morphine-like effects of clonidine on the EEG, slow wave sleep and behavior in the dog. Eur. J. Pharmacol. 81, 551–557.PubMedCrossRefGoogle Scholar
  67. Prado de Carvalho, L. and Izquierdo, I. (1977) Changes in the frequency of electroencephalographs rhythms of the rat caused by single, intraperitoneal injections of ethanol. Arch. Int. Pharmacodyn. Ther. 229, 157–162.Google Scholar
  68. Robert, T. A., Daigneault, E. A., and Uagardorn, A. N. (1978) Relationship between fluphenazine plasma concentration and electroencephalographs alterations. Commun. Psychopharmacol. 2, 467–474.PubMedGoogle Scholar
  69. Rosadini, G., Cavazza, B., Rodriquez, G., Sannita, W. G., and Siccardi, A. (1977) Computerized EEG analysis for studying the effect of drugs on the central nervous system. Int. J. Clin. Pharmacol. 15, 519–525.Google Scholar
  70. Saletu, B. (1982) Pharmaco-EEG profiles of typical antidepressants. Adv. Biochem. Psychopharmacol. 32, 257–268.PubMedGoogle Scholar
  71. Sauerland, E. K. and Harper, R. M. (1970) Effects of ethanol on EEG spectra of the intact brain and isolated forebrain. Exp. Neurol. 27, 490–496.PubMedCrossRefGoogle Scholar
  72. Schallek, W. and Johnson, T. C. (1976) Spectral density analysis of the effects of barbiturates and benzodiazepines on the electrocorticogram of the squirrel monkey. Arch. Int. Pharmacodyn. 223, 301–310.PubMedGoogle Scholar
  73. Speckmann, E.-J. and Elger, C. E. (1982) Neurophysiological Basis of the EEG and of D.C. Potentials, in Electroenceophalography: Basic Principles, Clinical Applications and Related Fields ( Niedermeyer, E. and Lopes da Silva, F., eds.) Urban and Schwarzenberg, Baltimore.Google Scholar
  74. Stein, S. N., Goodwin, C. W., and Garvin, J. S. (1949) A brain wave correlator and preliminary studies. Trans. Am. Neurol. Assoc. 74, 197–198.Google Scholar
  75. Steinfels, G. F., Young, G. A., and Khazan, N. (1980) Opioid self-administration and REM sleep EEG power spectra. Neuropharmacology 19, 69–74.PubMedCrossRefGoogle Scholar
  76. Stratton, K. R., Young, G. A., and Eccles, C. U. (1983) Trimethyltin administration alters cortical and hippocampal EEG power spectra during slow-wave and rapid eye movement sleep. Soc. Neurosci. Absts. 9, 1247.Google Scholar
  77. Stratton, K., Young, G., and Eccles, C. (1985) Kainic acid lesions of the hippocampus mimic trimethyltin effects on REM sleep but not slow-wave sleep. Fed. Proc. 44, 743.Google Scholar
  78. Tortella, F. C., Cowan, A., and Adler, M. W. (1980) EEG and behavioral effects of ethylketocyclazocine, morphine and cyclazocine in rats: Differential sensitivities towards naloxone. Neuropharmacology 19, 845–850.PubMedCrossRefGoogle Scholar
  79. Walter, D. L. (1963) Spectral analysis for electroencephalogram: Mathematical determination of neurophysiological relationships from records of limited duration. Exp. Neurol. 8, 155–181.PubMedCrossRefGoogle Scholar
  80. Wolf, D. L., Young, G. A., and Khazan, N. (1981) Comparison between ethanol-induced and slow–wave sleep synchronous EEG activities utilizing spectral analyses. Neuropharmacology 20, 687–692.PubMedCrossRefGoogle Scholar
  81. Young, G. A. and Khazan, N. (1984a) Differential neuropharmacological effects of mu, kappa and sigma opioid agonists on cortical EEG power spectra in the rat. Stereospecificity and naloxone antagonism. Neuropharmacology 23, 1161–1165.PubMedCrossRefGoogle Scholar
  82. Young, G. A. and Khazan, N. (1984b) Differential tolerance and cross-tolerance to repeated daily injections of mu and kappa opioid agonists in the rat. Neuropharmacology 23, 505–509.PubMedCrossRefGoogle Scholar
  83. Young, G. A. and Khazan, N. (1985) Comparison of abstinence syndromes following chronic administration of mu and kappa opioid agonists in the rat. Pharmacol. Biochem. Behav. 23, 457–460.PubMedCrossRefGoogle Scholar
  84. Young, G. A. and Khazan, N. (1986) Differential protracted effects of opioid challenges in mu and kappa post-tolerant rats. Eur. J. Pharmacol. 125, 265–271.PubMedCrossRefGoogle Scholar
  85. Young, G. A., Neistadt, L., and Khazan, N. (1981) Differential neurophar-macology effects of mu, kappa and sigma opioid agonists on cortical EEG power spectra in the rat. Res. Commun. Psychol. Psychial. Behav. 6, 365–377.Google Scholar
  86. Young, G. A., Wolf, D. L., and Khazan, N. (1982) Relationships between blood ethanol levels and ethanol-induced changes in cortical EEG power spectra in the rat. Neurophantiacology 21, 721–723.CrossRefGoogle Scholar
  87. Young, G. A., Steinfels, G. F., Khazan, N., and Glaser, E. M. (1978a) Morphine self-administration and EEG power spectra in the rat. Pharmacol. Biochem. Behav. 9, 525–527.PubMedCrossRefGoogle Scholar
  88. Young, G. A., Steinfels, G. F., Khazan, N., and Glaser, E. M. (1978b) Cortical EEG power spectra associated with sleep-awake behavior in the rat. Pharmacol. Biochem. Behav. 8, 89–91.PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1987

Authors and Affiliations

  • Gerald A. Young
  • Oksoon Hong
  • Naim Khazan

There are no affiliations available

Personalised recommendations