Computer-Based Approaches to Drug Design

  • Philip Loftus
  • Marvin Waldman
  • Robert F. HoutJr.


Two major factors have influenced the dramatic growth in the use of computer-modeling techniques as an integral aspect of the drug discovery process. The first of these has been the increased availability of powerful, but relatively inexpensive, computer systems in both academic and industrial research laboratories. This provided researchers with direct access to a level of computational capacity that had previously been available only on large and prohibitively expensive mainframe computers. The second important factor was the availability of high-speed, high-resolution, graphical display systems.


Drug Design Partial Charge Molecular Geometry Polar Interaction Dihydrofolate Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, R. J. and Hudson, B. (1984) Approaches to charge calculations in molocular mechanics. 2. Resonance effects in conjugated systems. J. Comp. Chem. 5, 562–570.CrossRefGoogle Scholar
  2. Abraham, R. J. and Parry, K. (1970) Rotational isomerism. VIII. A calculation of the rotational barriers and rotamer energies of some halogenated compounds. J. Chem. Soc. B, 539–545.Google Scholar
  3. Allinger, N. L. (1976) Calculation of molecular structure and energy by force-field methods. Adv. Phys. Org. Chem. 13, 1–82.CrossRefGoogle Scholar
  4. Andrews, P. R., Craik, D. J., and Martin, J. L. (1984) Functional group contributions to drug-receptor interactions. J. Med. Chem. 27, 1648–1657.PubMedCrossRefGoogle Scholar
  5. Armarego, W. L. F., Waring, P., and Williams, J. W. (1980) Absolute configuration of 6-methyl-5,6,7,8-tetrahydropterin produced by enzymatic reduction (dihydrofolate reductase and NADPH) of 6-methyl-7,8-dihydropterin. Chem. Comm. 334–336.Google Scholar
  6. Baird, N. C. and Dewar, M. J. S. (1969) Ground state of sigma-bonded molecules. IV. M.I.N.D.O. method and its application to hydrocarbons. J. Chem. Phys. 50, 1262–1274.CrossRefGoogle Scholar
  7. Baker, D. J., Beddell, C. R., Champness, J. N., Goodford, P. J., Norrington, F. E. A., Smith,D. R., and Stammer, D. K. (1981) The binding of trimethoprim to bacterial dihydrofolate reductase. FEBS Lett. 126, 49–52.PubMedCrossRefGoogle Scholar
  8. Bingham, R. C., Dewar, M. J. S., and Lo, D. H. (1975) Ground states of molecules. XXV. MINDO-3: An improved version of the MINDO semi-empirical SCF-MO method. J. Am. Chem. Soc. 97, 1285–1293.CrossRefGoogle Scholar
  9. Binkley, J. S., Frisch, M. J., DeFrees, D. J., Raghavachari, K., Whiteside, R. A., Schlegel, H. B., Fluder, E. M., and Pople, J. A. (1983) GAUSSIAN 82 Carnegie-Mellon University, Pittsburgh, Pennsylvania.Google Scholar
  10. Binkley, J. S., Whiteside, R. A., Krishman, R„ Seeger, R., DeFrees, D. J., Schlegel, H. B., Topiol, S., Kahn, L. R., and Pople, J. A. (1981) QCPE program 406. University of Indiana, Bloomington, Indiana.Google Scholar
  11. Blake, C. C. F. and Oatley, S. J. (1977) Protein-DNA and protein-hormone interactions in prealbumin: A model of the thyroid hormone nuclear receptor. Nature 268, 115–120.PubMedCrossRefGoogle Scholar
  12. Blake, C. C. F., Geisow, M.J., Oatley, S. J., and Rerat, C. J. (1978) Structure of prealbumin: Secondary, tertiary and quaternary interactions determined by Fourier refinement at 1.8 angstroms. J. Mol. Biol. 121, 339–356.PubMedCrossRefGoogle Scholar
  13. Blaney, J. M., Jorgenson, E. C., Connolly, M. L., Ferrin, T. E., Langridge, R., Oatley, S. J., Burridge, J. M., and Blake, C. C. F. (1982) Computer graphics in drug design: Molecular modeling of thyroid hormone-prealbumin interactions. J. Med. Chem. 25, 785–790.PubMedCrossRefGoogle Scholar
  14. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and Karplus, M. (1983) CHARMM: A program for macromolecular energy, minimization and dynamics calculations. J. Comp. Chem. 4, 187–217.CrossRefGoogle Scholar
  15. Bush, B. L. (1984) Interactive modeling of enzyme-inhibitor complexes at Merck Macromolecular Modeling graphics facility. Comp. Chem. 8, 1–11.CrossRefGoogle Scholar
  16. Colwell, W. T., Brown, V. H., Degraw, J. T., and Morrison, N. E. (1979) Inhibition of mycobacterial dihydrofolate reductase by 2,4-diamino-6-alkylpteridines and deazapteridines. Dev. Biochem. 215–218.Google Scholar
  17. Connolly, M. L. (1983a) Solvent-accessible surfaces of proteins and nucleic acids. Science 221, 709–813.PubMedCrossRefGoogle Scholar
  18. Connolly, M. L. (1983b) Analytical molecular surface calculation. J. Appl. Crystallogr. 16, 548–558.CrossRefGoogle Scholar
  19. Del Re, G. (1958) A simple M.O. L.C.A.O. method for calculating the charge distribution in saturated organic molecules. J. Chem. Soc. 4031–4040.Google Scholar
  20. Dewar, M. J. S. and Haselbach, E.)1970) Ground states of sigma-bonded molecules. IX. The MINDO/2 method. J. Am. Chem. Soc. 92, 590–598.Google Scholar
  21. Dewar, M. J. S. and Thiel, W. (1977) Ground states of molecules. 38. The MNDO method. Approximations and parameters. J. Am. Chem. Soc. 99, 4899–4907.CrossRefGoogle Scholar
  22. Dupius, M., Rys, J., and King, H. F. (1976) Evaluation of molecular integrals over Gaussian basis functions. J. Chem. Phys. 65, 111–116.CrossRefGoogle Scholar
  23. Dupius, M., Spangler, D., and Wendoloski, J. J. (1980) NRCC software catalog 1, program QG01, Lawrence Berkeley Laboratory, University of California, Berkeley, California.Google Scholar
  24. Eberhardt, N. L., Ring, J. C., Latham, K. R., and Baxter, J. D. (1979) Thyroid hormone receptors. Alterations of hormone binding Specificity. J. Biol. Chem. 254, 8534–8539.PubMedGoogle Scholar
  25. Fontecilla-Camps, J. C., Bugg, C. E., Temple Jr., C., Rose, J. D., Montgomery, J. A., and Kisliuk, R. L. (1979) Absolute configuration of biological tetrahvdrofolates. A. crvstallographic determination. J. Am. Chem. Soc. 101, 6114–6115.CrossRefGoogle Scholar
  26. Hangaur, D. G., Monzingo, A. F., and Matthews, B. W. (1984) An interactive computer graphics study of thermolysin-catalyzed peptide cleavage and inhibition by N-carboxymethyl dipeptides. Biochemistry 23, 5730–5741.CrossRefGoogle Scholar
  27. Hansch, C., Li, R., Blaney, J. M., and Langridge, R. (1982) Comparison of the inhibition of Escherichia coli and Lactobacillus casei dihydrofolate reductase by 2,4-diamino-5-(substituted benzyl) pyrimidines: Quantitative structure-activity relationships, X-ray crystallography and computer graphics in structure-activity analysis. J. Med. Chem. 25, 777–784.PubMedCrossRefGoogle Scholar
  28. Hendrickson, J. B. (1961) Molecular Geometry. I. Machine computation of the common rings. J. Am. Chem. Soc. 83, 4537–4547.CrossRefGoogle Scholar
  29. Hitchings, G. H. and Roth B. (1980) Dihydrofolate Reductases as Targets for Selective Inhibitors, in Enzyme Inhibitors as Drugs ( Sandler, M., ed.) Macmillan, London.Google Scholar
  30. Lifson, S. and Warshel, A. (1968) Consistent force field calculations of conformations, vibrational spectra, and enthalpies of cycloalkane and n-alkane molecules. J. Chem. Phys. 49, 5116–5129.CrossRefGoogle Scholar
  31. Matthews, D. A., Alden, R. A., Bolin, J. T., Filman, D. J., Freer, S. T., Suong, R., and Kraut, J. (1978) Dihydrofolate reductase from Lactobacillus casei. X-ray structure of the enzvme-methotrexate-NADPH complex. J. Biol. Chem. 253, 6946–6954.PubMedGoogle Scholar
  32. Matthews, D. A., Alden, R. A., Freer, S. T., Xuong, N. H., and Kraut, J. (1979) Dihydrofolate reductase from Lactobacillus casei. Stereochemistry of NADPH binding. J. Biol. Chem. 254, 4144–4151.PubMedGoogle Scholar
  33. Momany, F. A. (1978) Determination of partial atomic charges from abinitio molecular electrostatic potentials. Application to formamide, methanol and formic acid. J. Phys. Chew. 82, 592–601.CrossRefGoogle Scholar
  34. Momany, F. A., McGuire, R. F., Burgess, A. W., and Scheraga, H. A. (1975) Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions and intrinsic torsional potentials for the naturally occurring amino acids. J. Phys. Chem. 79, 2361–2381.CrossRefGoogle Scholar
  35. Monzingo, A. F. and Matthews, B. W. (1984) Binding of N-carboxymethyl dipeptide inhibitors to thermolysin determined by X-ray crystallography: A novel class of transition state analogues for zinc peptidases. Biochemistry 23, 5724–5729.PubMedCrossRefGoogle Scholar
  36. Morihara, K. and Tsuzuki, H. (1970) Thermolysin: Kinetic study with oligopeptides. Eur. J. Biochem. 15, 374–380.PubMedCrossRefGoogle Scholar
  37. Mulliken, R. S. (1962) Criteria for the construction of good self-consistent field molecular orbital wave functions, and the significance of L.C.A.O. M.O. population analysis. J. Chem. Phys. 36, 3428–3439.CrossRefGoogle Scholar
  38. Pople, J. A. and Gordon, M. (1967) Molecular orbital theory of the electronic structure of organic compounds. I. Substituent effects and dipole moments. J. Am. Chem. Soc. 89, 4253–4261.CrossRefGoogle Scholar
  39. Pople, J. A. and Segal, G. A. (1966) Approximate self-consistent molecular orbital theory. III. CNDO results for AB2 and AB3 systems. J. Chem. Phys. 44, 3289–3296.CrossRefGoogle Scholar
  40. Pople, J. A., Beveridge, D. L., and Dobosh, P. A. (1967) Approximate self-consistent orbital theory. V. Intermediate neglect of differential overlap. J. Chem. Phys. 47, 2026–2033.CrossRefGoogle Scholar
  41. Salama, A. I., Insalaco, J. R., and Maxwell, R. A. (1971) Concerning the molecular requirements for the inhibition of uptake of racemic 3H-norepinephrine into rat cerebral cortex slices by tricyclic antidepressants and related compounds. J. Pharmacol. Exp. Ther. 178, 474–481.PubMedGoogle Scholar
  42. Shotton, D. M. and Watson, H. C. (1970) Three-dimensional structure of tosyl-elastase. Nature 225, 811–816.PubMedCrossRefGoogle Scholar
  43. Spark, M.J., Winkler, D. A., and Andrews, P. R. (1982) Conformational analysis of folates and folate analogues. Int. J. Quantum Chem., Quantum Biol. Symp. 9, 321–333.Google Scholar
  44. Stewart, J. J. P. and Dewar, M. J. S. (1983) QCPE program 455, University of Indiana, Bloomington, Indiana.Google Scholar
  45. Stolow, R. D., Samal, P. W„ and Giants, T. W. (1981) On CNDO/2—predicted charge alternation. J. Am. Chem. Soc. 103, 197–199.CrossRefGoogle Scholar
  46. Watson, H. C., Shotton, D. M., Cox, J. M., and Muirhead, H. (1970) Three-dimensional Fourier synthesis of tosyl-elastase at 3.5 angstrom resolution. Nature 225, 806–811.PubMedCrossRefGoogle Scholar
  47. Weiner, P. K. and Kollman, P. A. (1981) AMBER: Assisted model building with energy refinement. A general program for modeling molecules and their interactions. J. Comp. Chem. 2, 287–303.CrossRefGoogle Scholar
  48. Wiberg, K. B. (1965) A scheme for strain energy minimization. Application to the cycloalkanes. J. Am. Chem. Soc. 87, 1070–1078.CrossRefGoogle Scholar
  49. Wiberg, K. B. (1979) Infrared intensities. The methyl halides. Effect of substituents on charge distributions. J. Am. Chem. Soc. 101, 1718–1722.CrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1987

Authors and Affiliations

  • Philip Loftus
  • Marvin Waldman
  • Robert F. HoutJr.

There are no affiliations available

Personalised recommendations