Yeast α-Factor Genes

  • Janet Kurjan
Part of the Molecular Biology and Biophysics book series (MBB)


Each of the two haploid mating types (a and α) in the yeast Saccharomyces cerevisiae secretes an oligopeptide pheromone that plays a role in the mating process (reviewed in rets. 1,2). Cells of a mating type secrete an 11-amino acid oligopeptide called a-factor (3) and cells of α mating type secrete a 13-amino acid oligopeptide called α-factor (4,5). The amino acid sequence of active a-factor is Trp-His-Trp-Leu-Gln-Leu-Lys-Pro-Gly-Gln-Pro-Met-Tyr. A portion of the α-factor isolated from cells lacks the amino-terminal Trp residue, but shows the same level of activity as that of full-length α-factor (6–8).


Mating Type Locus MATa Strain Dipeptidyl Aminopeptidase Putative Glycosylation Site Basic Amino Acid Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Manney T. R., Duntze W., and Betz R. (1981) The Isolation, Characterization and Physiological Effects of the Saccharomyces cerevisiae sex pheromones, in Sexual Interactions in Eukaryotic Microbes, ( O’Day D. O. and Horgen P. A., eds.) Academic, New York.Google Scholar
  2. 2.
    Thorner J. (1981) Pheromonal Regulation of Development in Saccharomyces cerevisiae, in The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance, ( Strathern J. N., Jones F. W., and Broach J. R., eds.) Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  3. 3.
    Betz R., Duntze W., and Manney T. R. (1981) Hormonal control of gametogenesis in the veast Saccharomyces cerevisiae. Gamete Res. 4, 571–584.CrossRefGoogle Scholar
  4. 4.
    Levi J. D. (1956) Mating reaction in yeast. Nature 177, 753–754.CrossRefGoogle Scholar
  5. 5.
    Duntze W., MacKay V. L., and Manney T. R. (1970) Saccharomyces cerevisiae: A diffusible sex factor. Science 168, 1472–1473.Google Scholar
  6. 6.
    Sakurai A., Sakata K., Tamura S., Aizawa K., Yanagishima N., and Shimoda C. (1976) Structure of the peptidyl factor inducing sexual agglutination in S. cerevisiae. Agric. Biol. Chem. 40, 1057–1058.CrossRefGoogle Scholar
  7. 7.
    Stötzler D. and Dunne W. (1976) Isolation and characterization of four related peptides exhibiting α-factor activity from Saccharomyces cerevisiae. Eur. J. Biochem. 65, 257–262.PubMedCrossRefGoogle Scholar
  8. 8.
    Stötzler D., Kiltz H., and Duntze W. (1976) Primary structure of α-factor peptides from Saccharomyces cerevisiae. Eur. J. Biochem. 69, 397–400.CrossRefGoogle Scholar
  9. 9.
    Bücking-Throm E., Duntze W., Hartwell L. H., and Manney T. R. (1973) Reversible arrest of haploid yeast cells at the initiation of DNA synthesis by a diffusible sex factor. Exp. Cell Res. 76, 99–110.PubMedCrossRefGoogle Scholar
  10. 10.
    Hartwell L. H. (1973) Synchronization of haploid yeast cell cycles, a prelude to conjugation. Exp. Cell Res. 76, 111–117.PubMedCrossRefGoogle Scholar
  11. 11.
    Yanagishima N. and Yoshida K. (1981) Sexual Interactions in Saccharomyces cerevisiae With Special Reference to the Regulation of Sexual Agglutinability, in Sexual Interactions in Eukaryotic Microbes. ( O’Day D. O. and Horgen P. A., eds.). Academic, New York.Google Scholar
  12. 12.
    Mackay V. L. and Manney T. R. (1974) Mutations affecting sexual conjugation and related processes in Saccharomyces cerevisiae. I. Isolation and phenotypic characterization of nonmating mutants. Genetics 76, 255–271.PubMedGoogle Scholar
  13. 13.
    Liebowitz M. J. and Wickner R. B. (1976) A chromosomal gene required for killer plasmid expression, mating, and spore maturation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 73. 2061–2065.CrossRefGoogle Scholar
  14. 14.
    Sprague G. F., Jr., Rine J., and Herskowitz I. (1981) Control of yeast cell type by the mating type locus. II. Genetic interactions between MATα and unlinked α-specific STE genes. J. Mol. Biol. 153, 323–335.PubMedCrossRefGoogle Scholar
  15. 15.
    Manney T. R. and Woods V. (1976) Mutants of Saccharomyces cerevisiae resistant to the α mating-type factor. Genetics 82, 639 - 644.PubMedGoogle Scholar
  16. 16.
    Hartwell L. H. (1980) Mutants of Saccharomyces cerevisiae unresponsive to cell division control by polypeptide mating hormone. J. Cell Biol. 85, 811–822.PubMedCrossRefGoogle Scholar
  17. 17.
    Kurjan J. and Hershowitz I. (1982) Structure of a yeast pheromone gene (MFα): A putative a-factor precursor contains four tandem copies of mature α-factor. Cell 30, 933–943.PubMedCrossRefGoogle Scholar
  18. 18.
    Singh A., Chen E. Y., Lugovoy J. M., Chang C. N., Hitzeman R. A., and Seeburg P. H. (1983) Saccharomyces cerevisiae contains two discrete genes coding for the a-factor pheromone. Nucleic Acids Res. 11, 4049–1063.PubMedCrossRefGoogle Scholar
  19. 19.
    Achstctter T. and Wolf D. H. (1985) Hormone processing and membrane-bound proteinases in yeast. EMBO J. 4, 173–177.Google Scholar
  20. 20.
    Julius D., Brake A., Blair L., Kunisawa R., and Thorner J. (1984) Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required for processing of veast prepro-α-factor. Cell 37, 1075–1089.PubMedCrossRefGoogle Scholar
  21. 21.
    Julius D., Blair L., Brake A., Sprague G., and Thorner J. (1983) Yeast α factor is processed from a larger precursor polypeptide: The essential role of a membrane-bound dipeptidyl aminopeptidase. Cell 32, 839–852.PubMedCrossRefGoogle Scholar
  22. 22.
    Kreil G., Haiml L., and Suchanek G. (1980) Stepwise cleavage of the pro part of promelittin by dipeptidvlpeptidase IV. Eur. J. Biochem. 111, 49–58.PubMedCrossRefGoogle Scholar
  23. 23.
    Strathern J., Hicks J., and Herskowitz I. (1981) Control of cell type in veast by the mating tvpe locus: The α1-α2 hypothesis. J. Mol. Biol. 147, 357–372.PubMedCrossRefGoogle Scholar
  24. 24.
    Jensen R., Sprague G. F., Jr., and Herskowitz I. (1983) Regulation of yeast mating-type interconversion: Feedback control of HO gene expression by the mating-tvpe locus. Proc. Natl. Acad. Sci. USA 80, 3035–3039.PubMedCrossRefGoogle Scholar
  25. 25.
    Sprague G. F., Jr., Jensen R., and Herskowitz I. (1983) Control of yeast cell type by the mating type locus: Positive regulation of the α-specific STE3 gene by the MATα1 product. Cell 32, 409–115.PubMedCrossRefGoogle Scholar
  26. 26.
    Sprague G. F., Jr. and Herskowitz I. (1981) Control of yeast cell type by the mating locus. I. Identification and control of expression of the a-specific gene, BAR1. J. Mol. Biol. 153, 305–321.PubMedCrossRefGoogle Scholar
  27. 27.
    Hicks J. B. and Herskowitz I. (1976) Evidence for a new diffusible element of mating pheromones in yeast. Nature 260, 246–248.PubMedCrossRefGoogle Scholar
  28. 28.
    Tanaka T. and Kita H. (1977) Degradation of mating factor by α-mating type cells of Saccharomyces cerevisiae. J. Biochem. 82, 1689–1693.PubMedGoogle Scholar
  29. 29.
    Maness P. F. and Edelman G. M. (1978) Inactivation and chemical alteration of mating factor a by cells and spheroplasts of yeast. Proc. Natl. Acad. Sci. USA 75, 1304–1308.PubMedCrossRefGoogle Scholar
  30. 30.
    Ciejek E. and Thorner J. (1979) Recovery of S. cerevisiae cells from G1 arrest by a factor pheromone requires endopeptidase action. Cell 18, 623–635.PubMedCrossRefGoogle Scholar
  31. 31.
    Nasmyth K. A. and Tatchell K. (1980) The structure of transposable yeast mating type loci. Cell 19, 753–764.PubMedCrossRefGoogle Scholar
  32. 32.
    Broach J. R., Strathern J. N., and Hicks J. B. (1979) Transformation in yeast: Development of a hybrid cloning vector and isolation of the CAN1 gene. Gene 8, 121–133.PubMedCrossRefGoogle Scholar
  33. 33.
    Chan R. K. and Otte C. A. (1982) Isolation and genetic analysis of Saccharomyces cerevisiae mutants supersensitive to G1 arrest by a-factor and a-factor pheromones. Mol. Cell. Biol. 2, 11–20.PubMedGoogle Scholar
  34. 34.
    Fink G. R. and Styles C. A. (1972) Curing of a killer factor in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 69, 2846–2849.CrossRefGoogle Scholar
  35. 35.
    Steiner D. F., Quinn P. S., Chan S. J., Marsh J., and Trager H. S. (1980) Processing mechanisms in the biosynthesis of proteins. Ann. NY Acad. Sci. 343, 1–16.PubMedCrossRefGoogle Scholar
  36. 36.
    Kreil G. (1981) Transfer of proteins across membranes. Ann. Rev. Biochem. 50, 317–348.PubMedCrossRefGoogle Scholar
  37. 37.
    Struck D. K., Lennarz W. J., and Brew K. (1978) Primary structural requirements for enzymatic formation of the N-glycosidic bond in glycoproteins. J. Biol. Chem. 253, 5786–5794.PubMedGoogle Scholar
  38. 38.
    Kurjan J. (1985) α-Factor structural gene mutations in Saccharomyces cerevisiae: Effects on a-factor production and mating. Mol. Cell. Biol. 5, 787–796.PubMedGoogle Scholar
  39. 39.
    Bennetzen J. L. and Hall B. D. (1982) Codon selection in yeast. J. Biol. Chem. 257, 3026–3031.PubMedGoogle Scholar
  40. 40.
    Breathnach R. and Chambon P. (1981) Organization and expression of eucaryotic split genes coding for proteins. Ann. Rev. Biochem. 50, 349–383.PubMedCrossRefGoogle Scholar
  41. 41.
    Bennetzen J. L. and Hall B. D. (1982) The primary structure of the Saccharomyces cerevisiae gene for alcohol dehydrogenase I. J. Biol. Chem. 257, 3018–3025.PubMedGoogle Scholar
  42. 42.
    Zaret K. S. and Sherman F. (1982) DNA sequence required for efficient transcription termination in yeast. Cell 28, 563–573.PubMedCrossRefGoogle Scholar
  43. 43.
    Achstetter T. and Wolf D. H. (1985) Hormone processing and membrane-bound proteinases in yeast. EMBO J. 4, 173–177.PubMedGoogle Scholar
  44. 44.
    Julius D., Schekman K., and Thorner J. (1984) Glycosylation and processing of prepro-a-factor through the yeast secretorv pathway. Cell 36, 309–318.PubMedCrossRefGoogle Scholar
  45. 45.
    Nakanishi S., Inouc A., Kita T., Nakamura M., Chang A. C. Y., Cohen S. N., and Numa S. (1979) Nucleotide sequence of cloned cDNA for bovine corticotropin-β lipotropin precursor. Nature 278, 423–427.PubMedCrossRefGoogle Scholar
  46. 46.
    Stern A. S., Jones B. N., Shively J. E., Stern S., and Udenfriend S. (1981) Two adrenal opioid polypeptides: Proposed intermediates in the processing of proenkephalin. Proc. Nail. Acad. Sci. USA 78, 1962–1966.CrossRefGoogle Scholar
  47. 47.
    Comb M., Seeburg P. H., Adelman J., Eiden L., and Herbert E. Primary structure of the human met- and leu-enkephalin precursor and its mRNA. Nature 295, 663–666.CrossRefGoogle Scholar
  48. 48.
    Lund P. K., Goodman R. H., Dee P. C., and Habener J. F. (1982) Pancreatic preproglucagon DNJA contains two glucagon-related coding sequences arrayed in tandem. Proc. Natl. Acad. Sci. USA 79, 345–349.PubMedCrossRefGoogle Scholar
  49. 49.
    Suarez-Rendueles M. P., Schwencke J., Garcia-Alvarez M., and Gascon S. (1981) A new X-prolyl-dipeptidyl aminopeptidase from veast associated with a particulate fraction. FEBS Lett. 131, 296–300.CrossRefGoogle Scholar
  50. 50.
    Hoffmann W., Bach T. C, Seliger H., and Kreil G. (1983) Biosynthesis of caerulein in the skin of Xenopus laevis: Partial sequences of precursors as deduced from cDNA clones. EMBO J. 2, 111–114.PubMedGoogle Scholar
  51. 51.
    Rothstein R. J. (1983) One-step gene disruption in yeast. Meth. Enzym. 101, 202–211.PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1987

Authors and Affiliations

  • Janet Kurjan

There are no affiliations available

Personalised recommendations