Skip to main content

Part of the book series: Molecular Biology and Biophysics ((MBB))

Abstract

The effects of opiate drugs on the brain in the perception of pain and pleasure have been known for a long time. The presence of an opiate receptor in the brain was realized in 1973 when it was demonstrated that opiate drugs bound stereospecifically and with high affinity at specific sites (1–3). This finding immediately prompted a search for the endogenous ligand(s) for these receptors because it did not seem reasonable that laboratory animals, through evolution, should have developed a receptor structure for a plant alkaloid such as morphine. The search for these endogenous ligands culminated in 1975 with the finding of two opioid peptides, termed methionine enkephalin (Met-enkephalin) and leucine enkephalin (Leu-enkephalin) (4). These pentapeptides were shown to have the following structures:

$$\begin{array}{*{20}{c}} {{\text{N}}{{{\text{H}}}_{2}}{\text{ - Tyr - Gly - Gly - Phe - Met - COOH:}} {\text{Met - enkephalin}}} \\ {{\text{N}}{{{\text{H}}}_{2}}{\text{ - Tyr - Gly - Gly - Phe - Leu - COOH:}} {\text{Leu - enkephalin}}} \\ \end{array}$$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pert C. B. and Snyder S. H. (1973) Opiate receptor: Demonstration in nervous tissue. Science 179, 1011–1014.

    Article  PubMed  CAS  Google Scholar 

  2. Simon E. J., Hillcr J. M., and Edelman I. (1973) Stereospecific binding of the potent narcotic analgesic (3H) etorphine to rat-brain homogenate. Proc. Natl. Acad. Sci. USA 70, 1947–1949.

    Article  PubMed  CAS  Google Scholar 

  3. Terenius L. (1973) Stereospecific interaction between narcotic analgesics and a synaptic plasma membrane fraction of rat cerebral cortex. Acta Pharmacol. Toxicol. 32, 317–320.

    Article  CAS  Google Scholar 

  4. Hughes J., Smith T. W., Kosterlitz H. W., Fothergill L. A., Morgan B. A., and Morris H. R. (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature (London) 258, 577–579.

    Article  CAS  Google Scholar 

  5. Udenfriend S. and Kilpatrick D. L. (1983) Biochemistry of the enkephalins and enkephalin containing peptides. Arch. Biochem. Biophys. 211, 309–323.

    Article  Google Scholar 

  6. Beaumont A. and Hughes J. (1979) Biology of opioid peptides. Ann. Rev. Pharmacol. Toxicol. 19, 245–267.

    Article  CAS  Google Scholar 

  7. Snyder S. H. and Innis R. B. (1979) Peptide neurotransmitters. Annu. Rev. Biochem. 8, 755–782.

    Article  Google Scholar 

  8. Childers S. R. (1980) Enkephalin and Endorphin Receptors, in Neurotransmitter Receptors. Receptors and Recognition Ser B Vol. 9, (Ena S. J. and Yamamura H. I., eds.), Chapman and Hall, London.

    Google Scholar 

  9. Wallace R. B., Shaffer J., Murphy R. I., Bonner J., Hirose T., and Itakura K. (1979) Hybridization of synthetic oligodeoxyribonucleotides to φχl74 DNA: The effect of single base pair mismatch. Nucleic Acids Res. 6, 3543–3557.

    Article  PubMed  CAS  Google Scholar 

  10. Lewis R. V., Stern A. S., Rossier J., Stein S., and Udenfriend S. (1979) Putative enkephalin precursors in bovine adrenal medulla. Biochem. Biophys. Res. Comm. 89, 822–829.

    Article  PubMed  CAS  Google Scholar 

  11. Noda M., Furutani Y., Takahashi H., Toyosato M., Hirose T., Inayama S., Nakanishi S., and Numa S. (1982) Cloning and sequence analysis of cDNA for bovine adrenal preproenkephalin. Nature 295, 202–206.

    Article  PubMed  CAS  Google Scholar 

  12. Gubler U., Kilpatrick D. L., Seeburg P. H., Gage L. P., and Udenfriend S. (1981) Detection and partial characterization of proenkephalin mRNA. Proc. Natl. Acad. Sci. USA 78, 5484–5487.

    Article  PubMed  CAS  Google Scholar 

  13. Gubler U., Seeburg P. H., Hoffman B. J., Gage L. P., and Udenfriend S. (1982) Molecular cloning establishes proenkephalin as precursor of enkephalin containing peptides. Nature 295, 206–208.

    Article  PubMed  CAS  Google Scholar 

  14. Comb M., Seeburg P. H., Adelman J., Eiden L., Herbert E. (1982) Primary structure of the human Met- and Leu-enkephalin precursor and its mRNA. Nature 295, 663–666.

    Article  PubMed  CAS  Google Scholar 

  15. Logon S., Glover D. M., Hughes J., Lovvry P.J., Rigby P.W.J., and Watson C. J. (1982) The structure and expression of the proenkephalin gene. Nucleic Acids Res. 10, 7905–7918.

    Article  Google Scholar 

  16. Gubler U. and Hoffman B. (1983) A simple and very efficient method for generating cDNA libraries. Gene 25, 263–269.

    Article  PubMed  CAS  Google Scholar 

  17. Proudfoot N. J. and Brownlee G. G. (1976) 3′Noncoding region sequences in eukaryotic messenger RNA. Nature 263, 211–214.

    Article  PubMed  CAS  Google Scholar 

  18. Blobel G. and Dobberstein B. (1975) Transfer of proteins across membranes: Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane bound ribosomes of murine myeloma. J. Cell Biol. 67, 833–851.

    Google Scholar 

  19. Steiner D. F., Quinn P. S., Chang S. J., Marsh J., and Tager H. S. (1980) Processing mechanisms in the biosynthesis of proteins. Ann. NY Acad. Sci. 343, 1–16.

    Article  PubMed  CAS  Google Scholar 

  20. Stern A. S., Jones B. N., Shively J. E., Stein S., and Udenfriend S. (1981) Two adrenal opioid polypeptides: Proposed intermediates in the processing of proenkephalin. Proc. Natl. Acad. Sci. 78, 1962–1966.

    Article  PubMed  CAS  Google Scholar 

  21. Kilpatrick D. L., Jones B. N., Kojima K., and Udenfriend S. (1981) Idientification of the octapeptide (Met) enkephalin-Arg6-Gly7-Leu8 in extracts of bovine adrenal medulla. Biochem. Biophys. Res. Cornnun. 103, 698–705.

    Article  CAS  Google Scholar 

  22. Comb M., Rosen H., Seeburg P., Adelman J., and Herbert E. (1983) Primary structure of the human proenkephalin gene. DNA 2, 213–229.

    Article  PubMed  CAS  Google Scholar 

  23. Noda M., Teranishi Y., Takahashi H., Toyosato M., Notake M., Nakanishi S., and Numa S. (1982) Isolation and structural organization of the human proenkephalin gene. Nature 297, 431–434.

    Article  PubMed  CAS  Google Scholar 

  24. Breathnach R. and Chambon P. (1981) Organization and expression of eukaryotic split genes coding for proteins. Annu. Rev. Biochem. 50, 349–383.

    Article  PubMed  CAS  Google Scholar 

  25. Terao M., Watanabe V., Mishina M., and Numa S. (1983) Sequence requirement for transcription in vivo of the human preproenkephalin A gene. EMBO J. 2, 2223–2228.

    PubMed  CAS  Google Scholar 

  26. Breathnach R., Benoist C., O’Hare K., Gannon F., and Chambon P. (1978) Ovalbumin gene: Evidence for a leader sequence in mKNA and DNA sequences at the exon-intron boundaries. Proc. Natl. Acad. Sci. USA 75, 4853–4857.

    Article  PubMed  CAS  Google Scholar 

  27. Lerner M. R., Boyle J. A., Mount S. M., Wolin S. L., and Steitz J. A. (1980) Are RNAs involved in splicing? Nature 283, 220–224.

    Article  PubMed  CAS  Google Scholar 

  28. Kakidani H., Furutani Y., Takahashi H., Noda M., Morimoto Y., Hirose T., Asai M., Inayama S., Nakanishi S., Numa S. (1982) Cloning and sequence analysis of cDNA for porcine β-neoendor-phin/dynorphin precursor. Nature (London) 298, 245–249.

    Article  CAS  Google Scholar 

  29. Whitfeld P. L., Seeburg P. H.,and Shine J. (1982) The human pro-opiomelanocortin gene: Organization, sequence and interspersion with repetitive DNA. DNA 1, 133–143.

    Article  PubMed  CAS  Google Scholar 

  30. Uhler M., Herbert E., D’Eustachio P., and Ruddle F. D. (1983) The mouse genome contains two nonallelic pro-opiomelanocortin genes. J. Biol. Chew. 258, 9444–9453.

    CAS  Google Scholar 

  31. Hamada H., Petriho M. G., and Kakunage T. (1982) A novel repeated element with Z-DNA forming potential is widely found in evolutionarilv diverse eukaryotic genomes. Proc. Natl. Acad. Sci. USA 79, 6465–6469.

    Article  PubMed  CAS  Google Scholar 

  32. Lewin B. (1976) Gene Expression-2, John Wiley and Sons, London.

    Google Scholar 

  33. Felsenfeld G. and McGhee J. (1982) Methylation and gene control. Nature 296, 602–603.

    Article  PubMed  CAS  Google Scholar 

  34. Ehrlich M. and Wang R. V. (1981) 5-Methyl-cytosine in eukaryotic DNA. Science 212, 1350–1357.

    Article  PubMed  CAS  Google Scholar 

  35. Howells R. D., Kilpatrick D. L., Bhatt R., Monahan J. J., Poonian M., and Udenfriend S. (1984) Molecular cloning and sequence determination of rat preproenkephalin cDNA: Sensitive probe for studying transcriptional changes in rat tissues. Proc. Natl. Acad. Sci. USA 81, 7651–7655.

    Article  PubMed  CAS  Google Scholar 

  36. Yoshikawa Y., Williams C., and Sabol S. L. (1984) Rat brain proenkephalin mRNA. J. Biol. Chem. 259, 14301–14308.

    PubMed  CAS  Google Scholar 

  37. Rosen H., Douglass J., and Herbert E. (1984) Isolation and characterization of the rat proenkephalin gene. J. Biol. Chem. 259, 14309–14313.

    PubMed  CAS  Google Scholar 

  38. Martens G. J. M. and Herbert E. (1984) Polymorphism and absence of leuenkephalin sequences in proenkephalin genes in Xenopus laevis. Nature 310, 251–254.

    Article  PubMed  CAS  Google Scholar 

  39. Horikawa S., Takai T., Toyosato M., Takahashi H., Noda M., Kakidani H., Kubo T., Hirose T., Inayama S., Hayashide H., Miyata T., and Numa S. (1983) Isolation and structural organization of the human preproenkephalin B gene. Nature 306, 611–614.

    Article  PubMed  CAS  Google Scholar 

  40. Benoist C, O’Hare K., Breathnach R., and Chambon P. (1980) The ovalbumin gene-sequence of putative control regions. Nucleic Acids Res. 8, 127–142.

    Article  PubMed  CAS  Google Scholar 

  41. Civelli O., Douglass J., Goldstein A., and Herbert E. (1985) Sequence and expression of the rat prodynorphin gene. Proc. Nail. Acad. Sci. USA 82, 4291–4295.

    Article  CAS  Google Scholar 

  42. Comb M., Herbert E., and Crea R. (1982) Partial characterization of the mRNA that codes for enkephalins in bovine adrenal medulla and human pheochromocytoma. Proc. Nail. Acad. Sci. USA 79, 360–364.

    Article  CAS  Google Scholar 

  43. Agarwal K. L., Brunstedt J., and Noyes B. (1981) A general method for the detection and characterization of an mRNA using an oligonucleotide probe. J. Biol. Chem. 256, 1023–1028.

    PubMed  CAS  Google Scholar 

  44. Dandekar S. and Sabol S. L. (1982) Cell-free translation and partial characterization of mRNA coding for enkephalin precursor protein. Proc. Natl. Acad. Sci. USA 79, 1017–1021.

    Article  PubMed  CAS  Google Scholar 

  45. Dandekar S. and Sabol S. L. (1982) Cell-free translation and partial characterization of proenkephalin messenger RNA from bovine striatum. Biochem. Biophys Res. Commun. 105, 67–74.

    Article  PubMed  CAS  Google Scholar 

  46. Sabol S. L., Liang C. M., Dandekar S., and Kranzler S. L. (1983) In vitro biosynthesis and processing of immunologically identified methionine-enkephalin precursor protein. J. Biol. Cliem. 258, 2697–2704.

    CAS  Google Scholar 

  47. Pittius C. W., Kiev N., Loeffler J. P., and Hoellt V. (1985) Quantitation of proenkephalin A messenger RNA in bovine brain, pituitary and adrenal medulla: Correlation between mRNA and peptide levels. EMBO J. 4, 1257–1260.

    PubMed  CAS  Google Scholar 

  48. Weaver C. F., Gordon D. F., and Kemper B. (1981) Introduction by molecular cloning of artifactual inverted seqeunces at the 5′ terminus of the sense strand of bovine parathyroid hormone cDNA. Proc. Natl. Acad. Sci. USA 78, 4073–4077.

    Article  PubMed  CAS  Google Scholar 

  49. Lewis R. V. and Stern A. S. (1983) Biosynthesis of the enkephalins and enkephalin-containing polypeptides. Ann. Rev. Pharmacol. Toxicol. 23, 353–372.

    Article  CAS  Google Scholar 

  50. Mount S. M. (1982) A catalogue of splice junction sequences. Nucleic Acids Res. 10, 459–472.

    Article  PubMed  CAS  Google Scholar 

  51. Dayhoff M. O., Schwartz R. M., and Orcutt B. C. (1978) Atlas of Protein Sequence and Structure 5, Suppl 3, 345–352.

    Google Scholar 

  52. Furutani Y., Morimoto Y., Shibahara S., Noda M., Takahashi H., Hirose T., Asai M., Inayama S., Hayashida H., Miyata T., and Numa S. (1983) Cloning and sequence analysis of cDNA for ovine corticotropin-releasing factor precursor. Nature 301, 537–540.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 The Humana Press Inc.

About this chapter

Cite this chapter

Gubler, U. (1987). Enkephalin Genes. In: Habener, J.F. (eds) Molecular Cloning of Hormone Genes. Molecular Biology and Biophysics. Humana Press. https://doi.org/10.1007/978-1-4612-4824-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4824-8_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-9178-7

  • Online ISBN: 978-1-4612-4824-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics