Advertisement

An Overview of Assessing Drug Reinforcement

  • Michael A. Bozarth

Abstract

The various methods used to study drug reinforcement are briefly examined, and some of the advantages and limitations of each procedure are discussed. Although some measures may seem preferable to others, each experimental technique has certain applications where it is most appropriate. The concordance of different experimental paradigms is also examined by summarizing the results of studies attempting to identify the neural substrates of psychomotor stimulant and opiate rewards. In general, there is substantial agreement among different experimental paradigms purporting to identify the brain mechanisms involved in these drug rewards. Finally, a protocol is suggested for the routine screening of new compounds for addiction liability. This protocol uses several experimental procedures, including both indirect and direct indices of drug reinforcement.

Keywords

Ventral Tegmental Area Conditioned Place Preference Drug Addiction Pharmacology Biochemistry Oxford English Dictionary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American heritage dictionary. (1969). New York: American Heritage Publishing Company.Google Scholar
  2. Atalay, J., & Wise, R. A. (1983). Time course of pimozide effects on brain stimulation reward. Pharmacology Biochemistry & Behavior, 18, 655–658.CrossRefGoogle Scholar
  3. Bozarth, M. A. (1978). Intracranial self-stimulation as an index of opioid addiction liability: An evaluation. Unpublished master’s thesis, Rensselaer Polytechnic Institute, Troy, NY.Google Scholar
  4. Bozarth, M. A. (1982). The neural substrate of opiate reward in the rat. Unpublished doctoral dissertation, Concordia University, Montreal.Google Scholar
  5. Bozarth, M. A. (1983). Opiate reward mechanisms mapped by intracranial self-administration. In J. E. Smith and J. D. Lane (Eds.), The neurobiology of opiate reward processes (pp. 331–359). Amsterdam: Elsevier/North Holland Biomedical Press.Google Scholar
  6. Bozarth, M. A. (1985). Biological basis of cocaine addiction. In C. J. Brink (Ed.), Cocaine: A symposium (pp. 32–36). Madison, WI: Wisconsin Institute on Drug Abuse.Google Scholar
  7. Bozarth, M. A. (1986). Neural basis of psychomotor stimulant and opiate reward: Evidence suggesting the involvement of a common dopaminergic system. Behavioural Brain Research, 22, 107–116.PubMedCrossRefGoogle Scholar
  8. Bozarth, M. A., & Wise, R. A. (1981). Intracranial self-administration of morphine into the ventral tegmental area. Life Sciences, 28, 551–555.PubMedCrossRefGoogle Scholar
  9. Bozarth, M. A., & Wise, R. A. (1982). Localization of the reward-relevant opiate receptors. In L. S. Harris (Ed.), Problems of drug dependence, 1981 (National Institute on Drug Abuse Research Monograph 41, pp. 158–164). Washington, DC: U.S. Government Printing Office.Google Scholar
  10. Bozarth, M. A., & Wise, R. A. (1983). Neural substrates of opiate reinforcement. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 7, 569–575.CrossRefGoogle Scholar
  11. Bozarth, M. A., & Wise, R. A. (1986). Involvement of the ventral tegmental dopamine system in opioid and psychomotor stimulant reinforcement. In L. S. Harris (Ed.), Problems of drug dependence, 1985 (National Institute on Drug Abuse Research Monograph 67, pp. 190–196). Washington, DC: U.S. Government Printing Office.Google Scholar
  12. Britt, M. D., & Wise, R. A. (1983). Ventral tegmental site of opiate reward: Antagonism by a hydrophilic opiate receptor blocker. Brain Research, 258, 105–108.CrossRefGoogle Scholar
  13. Broekkamp, C. L. E. (1976). The modulation of rewarding systems in the animal brain by amphetamine, morphine, and apomorphine. Druk, The Netherlands: Stichting Studentenpers Nijmgen.Google Scholar
  14. Broekkamp, C. L., Phillips, A. G., & Cools, A. R. (1979). Facilitation of self-stimulation behavior following intracerebral microinjection of opioids into the ventral tegmental area. Pharmacology Biochemistry & Behavior, 11, 289–295.CrossRefGoogle Scholar
  15. Broekkamp, C. L. E., Pijnenburg, A. J. J., Cools, A. R., & van Rossum, J. M. (1975). The effect of microinjections of amphetamine into the neostriatum and the nucleus accumbens on self-stimulation behavior. Psychopharmacologia, 42, 179–183.PubMedCrossRefGoogle Scholar
  16. Broekkamp, C. L., van den Bogaard, J. H., Heynen, H. J., Rops, R. H. Cools, A. R., & van Rossum, J. M. (1976). Separation of inhibiting and stimulating effects of morphine in self-stimulation behavior by intracerebral microinjections. European Journal of Pharmacology, 36, 443–446.PubMedCrossRefGoogle Scholar
  17. de Wit, H., & Stewart, J. (1981). Reinstatement of cocaine-reinforced responding in the rat. Psychopharmacology, 75, 134–143.PubMedCrossRefGoogle Scholar
  18. Esposito, R., & Kornetsky, C. (1978). Opioids and rewarding brain stimulation. Neuroscience and Biobehavioral Reviews, 2, 115–122.CrossRefGoogle Scholar
  19. Goeders, N. E., Lane, J. D., & Smith, J. E. (1984). Self-administrât ion of methionine enkephalin into the nucleus accumbens. Pharmacology Biochemistry & Behavior, 20, 451–455.CrossRefGoogle Scholar
  20. Goeders, N. E., & Smith, J. E. (1983). Cortical dopaminergic involvement in cocaine reinforcement. Science, 221, 773–775.PubMedCrossRefGoogle Scholar
  21. Glick, S. D., Cox, R. D., & Crane, A. M. (1975). Changes in morphine self-administration and morphine dependence after lesions of the caudate nucleus in rats. Psychopharmacology, 41, 219–224.CrossRefGoogle Scholar
  22. Glick, S. D., & Marsanico, R. G. (1975). Time-dependent changes in amphetamine self-administrâtion following frontal cortex ablations in rats. Journal of Comparative and Physiological Psychology, 88, 355–359.PubMedCrossRefGoogle Scholar
  23. Glimcher, P. W., Giovino, A. A., Margolin, D. H., & Hoebel, B. G. (1984). Endogenous opiate reward induced by an enkephalinase inhibitor, thiorphan, injected into the ventral midbrain. Behavioral Neuroscience, 98, 262–268.PubMedCrossRefGoogle Scholar
  24. Griffiths, R. R., & Balster, R. L. (1979). Opioids: Similarity between evaluations of subjective effects and animal self-admi ni strati on results. Clinical Pharmacology and Therapeutics, 25, 611–617.PubMedGoogle Scholar
  25. Hand, T. H., & Franklin, K. B. J. (1985). 6-OHDA lesions of the ventral tegmental area block morphine-induced but not amphetamine-induced facilitation of self-stimulâtion. Brain Research, 328, 233–241.CrossRefGoogle Scholar
  26. Hernandez, L. L., Holohean, A. M., & Appel, J. B. (1978). Effects of opiates on the’diseriminative stimulus properties of dopamine agonists. Pharmacology Biochemistry & Behavior, 9, 459–463.CrossRefGoogle Scholar
  27. Hoebel, B. G., Monaco, A. P., Hernandez, L., Aulisi, E. F., Stanley, B. G., & Lenard, L. (1983). Self-injection of amphetamine directly into the’brain, Psychopharmacology, 81, 158–163.PubMedCrossRefGoogle Scholar
  28. Jaffe, J. H. (1975). Drug addiction and drug abuse. In L. S. Goodman & A. Gilman (Eds.), The pharmacological basis of therapeutics (pp. 284–324). New York: MacMillan.Google Scholar
  29. Kornetsky, C., & Esposito, R. U. (1979). Euphorigenic drugs: Effects on the reward pathways of the brain. Federation Proceedings, 38, 2473–2476.PubMedGoogle Scholar
  30. Lyness, W. H., Friedle, N. M., & Moore, K. E. (1979). Destruction of dopaminergic nerve terminals in nucleus accumbens: Effect on d-amphetamine self-administrâtion. Pharmacology Biochemistry & Behavior, 11, 553–556.CrossRefGoogle Scholar
  31. Olds, M. E. (1979). Hypothalamic substrate for the positive reinforcing properties of morphine in the rat. Brain Research, 168, 351–360.PubMedCrossRefGoogle Scholar
  32. Olds, M. E. (1982). Reinforcing effects of morphine in the nucleus accumbens. Brain Research, 237, 429–440.PubMedCrossRefGoogle Scholar
  33. Oxford English dictionary. (1933). Oxford: Oxford University Press.Google Scholar
  34. Oxford English dictionary (supplement). (1933). Oxford: Oxford University Press.Google Scholar
  35. Phillips, A. G., & LePiane, F. G. (1980). Reinforcing effects of morphine microinjection into the ventral tegmental area. Pharmacology Biochemistry & Behavior, 12, 965–968.CrossRefGoogle Scholar
  36. Phillips, A. G., & LePiane, F. G. (1982). Reward produced by microinjection of (D-ala2), Met 5-enkephalinamide into the ventral tegmental area. Behavioural Brain Research, 5, 225–229.PubMedCrossRefGoogle Scholar
  37. Phillips, A. G., Mora, F., & Bolls, E. T. (1981). Intracerebral self-administration of amphetamine by rhesus monkeys. Neuroscience Letters, 24, 81–86.PubMedCrossRefGoogle Scholar
  38. Reid, L. D., & Bozarth, M. A. (1978). Addictive agents and pressing for intracranial stimulation (ICS): The effects of various opioids on pressing for ICS. Problems of Drug Dependence, 729–741.Google Scholar
  39. Roberts, D. C. S., Corcoran, M. E., & Fibiger, H. C. (1977). On the role of the ascending catecholaminergic systems in intravenous self-administration of cocaine. Pharmacology Biochemistry & Behavior, 6, 615–620.CrossRefGoogle Scholar
  40. Roberts, D. C. S., and Koob, G. F. (1982). Disruption of cocaine self-administration following 6-hydroxydopamine lesions of the ventral tegmental area in rats, Pharmacology Biochemistry & Behavior, 17, 901–904.CrossRefGoogle Scholar
  41. Roberts, D. C. S., Koob, G. F., Klonoff, P., and Fibiger, H. C. (1980). Extinction and recovery of cocaine self-administration following 6-hydroxydopamine lesions of the nucleus accumbens. Pharmacology Biochemistry & Behavior, 12, 781–787.CrossRefGoogle Scholar
  42. Spealman, R. D., & Goldberg, S. R. (1978). Drug self-administration by laboratory animals: Control by schedules of reinforcement. Annual Reviews of Pharmacology & Toxicology, 18, 313–339.CrossRefGoogle Scholar
  43. Spyraki, C., Fibiger, H. C., & Phillips, A. G. (1982). Dopaminergic substrates of amphetamine-induced place preference conditioning. Brain Research, 253, 185–192.PubMedCrossRefGoogle Scholar
  44. Spyraki, C., Fibiger, H. C., & Phillips, A. G. (1983). Attenuation of heroin reward in rats by disruption of the mesolimbie dopamine system. Psychopharmacology, 79, 278–283.PubMedCrossRefGoogle Scholar
  45. Stewart, J. (1984). Reinstatement of heroin and cocaine self-administration behavior in the rat by intracerebral application of morphine in the ventral tegmental area. Pharmacology Biochemistry & Behavior, 20, 917–923.CrossRefGoogle Scholar
  46. Tatum, A. L., & Seevers, M. H. (1929). Experimental cocaine addiction. Journal of Pharmacology and Experimental Therapeutics, 36, 401–410.Google Scholar
  47. Tatum, A. L., & Seevers, M. H. (1931). Theories of drug addiction. Physiological Reviews, 11, 107–121.Google Scholar
  48. Tatum, A. L., Seevers, M. H., & Collins, K. H. (1929). Morphine addiction and its physiological interpretation based on experimental evidences. Journal of Pharmacology and Experimental Therapeutics, 36, 447–475.Google Scholar
  49. Vaccarino, F. J., Bloom, F. E., & Koob, G. F. (1985). Blockade of nucleus accumbens opiate receptors attenuates intravenous heroin reward in the rat. Psychopharmacology, 86, 37–42.PubMedCrossRefGoogle Scholar
  50. van Ree, J. M., & de Wied, D. (1980). Involvement of neurohypophyseal peptides in drug-mediated adaptive responses. Pharmacology Biochemistry & Behavior, 13(Suppl. 1), 257–263.Google Scholar
  51. Webster’s third new international dictionary. (1981). Springfield, MA: Merrian-Webster.Google Scholar
  52. Wise, R. A., & Bozarth, M. A. (1982). Action of drugs of abuse on brain reward systems: An update with specific attention to opiates. Pharmacology Biochemistry & Behavior, 17, 239–243.CrossRefGoogle Scholar
  53. Wise, R. A., & Bozarth, M. A. (1984). Brain reward circuitry: Four elements “wired” in apparent series. Brain Research Bulletin, 12, 203–208.PubMedCrossRefGoogle Scholar
  54. Zito, K. A., Vickers, G., & Roberts, D. C. S. (1985). Disruption of cocaine and heroin self-administration following kainic acid lesions of the nucleus accumbens. Pharmacology Biochemistry & Behavior, 23, 1029–1036.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Michael A. Bozarth
    • 1
  1. 1.Center for Studies in Behavioral Neurobiology Department of PsychologyConcordia UniversityMontrealCanada

Personalised recommendations