Conditioned Place Preference: A Parametric Analysis Using Systemic Heroin Injections

  • Michael A. Bozarth

Abstract

A series of experiments is described that explores some of the parametric aspects of place preference conditioning. Several procedures that affect classical conditioning were used, such as increasing the intensity of the unconditioned stimulus and increasing the number of conditioning trials. These manipulations had little effect on the strength of the conditioned response. Alternative explanations for the shift in place preference were also examined, and none of these factors could adequately account for the data. Although place preference is usually tested in drug-free subjects, the strongest place preference was seen when subjects were tested following injections of the conditioning drug. This suggests that the drug cue may be the most salient stimulus associated with the rewarding action of the drug, and the absence of this stimulus may limit the strength of the conditioning seen in most place preference studies.

Keywords

Nicotine Cocaine Haloperidol Clonidine Methylphenidate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Advokat, C. (1985). Evidence of place conditioning after chronic intrathecal morphine in rats. Pharmacology Biochemistry & Behavior, 22, 271–277.CrossRefGoogle Scholar
  2. Asin, K. E., & Wirtshafter, D. (1985). Clonidine produces a conditioned place preference in rats. Psychopharmacology, 85, 383–385.PubMedCrossRefGoogle Scholar
  3. Asin, K. E., Wirtshafter, D., & Tabakoff, B. (1985). Failure to establish a conditioned place preference with ethanol in rats. Pharmacology Biochemistry & Behavior, 22, 169–173.CrossRefGoogle Scholar
  4. Bardo, M. T., Miller, J. S., & Neisewander, J. L. (1984). Conditioned place preference with morphine: The effect of extinction training on the reinforcing CR. Pharmacology Biochemistry & Behavior, 21, 545–549.CrossRefGoogle Scholar
  5. Beach, H. D. (1957). Morphine addiction in rats. Canadian Journal of Psychology, 11, 104–112.PubMedCrossRefGoogle Scholar
  6. Blander, A., Hunt, T., Blair, R., & Amlt, Z. (1984). Conditioned place preference: An evaluation of morphine’s positive reinforcing properties. Psychopharmaco1ogy, 84, 124–127.CrossRefGoogle Scholar
  7. Bozarth, M. A. (1983). A computer approach to measuring shuttle box activity and conditioned place preference. Brain Research Bulletin, 11, 751–753.PubMedCrossRefGoogle Scholar
  8. Bozarth, M. A., & Wise, R. A. (1981). Heroin reward is dependent on a dopaminergic substrate. Life Sciences, 29, 1881–1886.PubMedCrossRefGoogle Scholar
  9. Bozarth, M. A., & Wise, R. A. (1982). Localization of the reward-relevant opiate receptors. In L. S. Harris (ed.), Problems of drug dependence, 1981 (National Institute on Drug Abuse Research Monograph 41, pp. 158–164). Washington, DC: U.S. Government Printing Office.Google Scholar
  10. Bozarth, M. A., & Wise, R. A. (1983). Dissociation of the rewarding and physical dependence-producing properties of morphine. In L. S. Harris (Ed.), Problems of drug dependence, 1982 (National Institute on Drug Abuse Research Monograph 43, pp. 171–177). Washington, DC: U.S. Government Printing Office.Google Scholar
  11. Carr, G. D., & White, N. M. (1983). Conditioned place preference from intra-accumbens but not intra-caudate amphetamine injections. Life Sciences, 33, 2551–2557.PubMedCrossRefGoogle Scholar
  12. Cunningham, C. L. (1981). Spatial aversion conditioning with ethanol. Pharmacology Biochemistry & Behavior, 14, 263–264.CrossRefGoogle Scholar
  13. de Wit, H., & Stewart, J. (1983). Drug reinstatement of heroin-reinforced responding in the rat. Psychopharmaco1ogy, 79, 29–31.CrossRefGoogle Scholar
  14. Ettenberg, A., Pettit, H. o., Bloom, F. E., & Koob, G. F. (1982). Heroin and cocaine intravenous self-administration in rats: Mediation by separate neural systems. Psychopharmacology, 78, 204–209.PubMedCrossRefGoogle Scholar
  15. Fisher, R. A. (1935). Cited in H. R. Lindman (1974), Analysis of variance in complex experimental designs. San Francisco: W. H. Freeman.Google Scholar
  16. Fudala, P. J., Teoh, K. W., & Iwamoto, E. T. (1985). Pharmacologic characterization of nicotine-induced conditioned place preference. Pharmacology Biochemistry & Behavior, 22, 237–241.CrossRefGoogle Scholar
  17. Gilbert, D., & Cooper, S. J. (1983). Beta-phenylethylamine-, d-amphetamine- and 1-amphetamine-induced place preference conditioning in rats. European Journal of Pharmacology, 95, 311–31PubMedCrossRefGoogle Scholar
  18. Giovino, A. A., Glimeher, P. W., Mattel, C. A., & Hoebel, B. G. (1983). Phencyclidine (PCP) generates conditioned reinforcement in the nucleus accumbens (ACC) but not in the ventral tegmental area (VTA). Society for Neuroscience Abstracts, 9, 120.Google Scholar
  19. Glimeher, P. W., Giovino, A. A., Margolin, D. H., & Hoebel, B. G. (1984a). Endogenous opiate reward induced by an enkephalinase inhibitor, thiorphan, injected into the ventral midbrain. Behavioral Neuroscience, 98, 262–268.CrossRefGoogle Scholar
  20. Glimeher, P. W., Margolin, D. H., Giovino, A. A., & Hoebel, B. G. (1984b). Neurotensin: A new ’reward peptide. ’ Brain Research, 291, 119–124.Google Scholar
  21. Katz, R. J., & Gormezano, G. (1979). A rapid and inexpensive technique for assessing the reinforcing effects of opiate drugs. Pharmacology Biochemistry & Behavior, 11, 231–233.CrossRefGoogle Scholar
  22. Kumar, R. (1972). Morphine dependence in rats: Secondary reinforcement from environmental stimuli. Psychopharmaco1ogy, 25, 332–338.CrossRefGoogle Scholar
  23. Kurz, E. M., & Levitsky, D. A (1983). Lithium chloride and avoidance of novel places. Behavioral Neuroscience, 97, 445–451.PubMedCrossRefGoogle Scholar
  24. Lindman, H. R. (1974). Analysis of variance in complex experimental designs. San Francisco: W. H. Freeman.Google Scholar
  25. Linton, M., & Gallo, P. S. (1975). The practical statistician: Simplified handbook of statistics. Monterey, CA: Brooks/Cole Publishing.Google Scholar
  26. Martin-Iverson, M. T., Ortmann, R., & Fibiger, H. C. (1985). Place preference conditioning with methylphenidate and nomifensine. Brain Research, 332, 59–67.PubMedCrossRefGoogle Scholar
  27. Meyer, R. E., & Mirin, S. M. (Eds.). (1979). The heroin stimulus: Implications for a theory of addiction. New York: Plenum Medical Book Company.Google Scholar
  28. Mucha, R. F., Millan, J. J., & Herz, A. (1985). Aversive properties of naloxone in non-dependent (naive) rats may involve blockade of central beta-endorphin. Psychopharmacology, 86, 281–285.PubMedCrossRefGoogle Scholar
  29. Mucha, R. F., van der Kooy, D., O’Shaughnessy, M., & Bucenieks, P. (1982). Drug reinforcement studied by the use of place conditioning in rat. Brain Research, 243, 91–105.PubMedCrossRefGoogle Scholar
  30. Phillips, A. G., & LePiane, F. G. (1980). Reinforcing effects of morphine microinjection into the ventral tegmental area. Pharmacology Biochemistry & Behavior, 12, 965–968.CrossRefGoogle Scholar
  31. Phillips, A. G., & LePiane, F. G. (1982). Reward produced by microinjection of (D-ala2), Met5-enkephalinamide into the ventral tegmental area. Behavioural Brain Research, 5, 225–229.PubMedCrossRefGoogle Scholar
  32. Phillips, A. G., Spyraki, C., & Fibiger, H. C. (1982). Conditioned place preference with amphetamine and opiates as reward stimuli: Attenuation by haloperidol. In B. G. Hoebel & D. Novin (Eds.), The neural basis of feeding and reward. Brunswick, ME: Haer Institute.Google Scholar
  33. Reid, L. D., Hunter, G. A., Beaman, C. M., & Hubbell, C. L. (1985). Toward understanding ethanol’s capacity to be reinforcing: A conditioned place preference following injections of ethanol. Pharmacology Biochemistry & Behavior, 22, 483–487.CrossRefGoogle Scholar
  34. Rossi, N. A., & Reid, L. D. (1976). Affective states associated with morphine injections. Physiological Psychology, 4, 269–274.Google Scholar
  35. Schenk, S., Ellison, F., Hunt, T., & Amit, Z. (1985). An examination of heroin conditioning in preferred and nonpreferred environments and in differentially housed mature and immature rats. Pharmacology Biochemistry & Behavior, 22, 215–220.CrossRefGoogle Scholar
  36. Schwartz, A. S., & Marchok, P. L. (1974). Depression of morphine-seeking behaviour by dopamine inhibition. Nature, 248, 257–258.PubMedCrossRefGoogle Scholar
  37. Sherman, J. E., Pickraan, C., Rice, A., Liebeskind, J. C., & Holman, E. W. (1980a). Rewarding and aversive effects of morphine: Temporal and pharmacological properties. Pharmacology Biochemistry & Behavior, 13, 501–505.CrossRefGoogle Scholar
  38. Sherman, J. E., Roberts, T., Roskam, S. E., & Holman, E. W. (1980b). Temporal properties of the rewarding and aversive effects of amphetamine in rats. Pharmacology Biochemistry & Behavior, 13, 597–599.CrossRefGoogle Scholar
  39. Smith, B. R., Amit, Z., & Splawinsky, J. (1984). Conditioned place preference induced by intraventricular infusions of acetaldehyde. Alcohol, 1, 193–195.PubMedCrossRefGoogle Scholar
  40. Spragg, S. D. S. (1940). Morphine addiction in chimpanzees. Comparative Psychology Monographs, 15, 1–132.Google Scholar
  41. Spyraki, C., Fibiger, H. C., & Phillips, A. G. (1982a). Dopaminergic substrates of amphetamine-induced place preference conditioning. Brain Research, 253, 185–193.PubMedCrossRefGoogle Scholar
  42. Spyraki, C., Fibiger, H. C., & Phillips, A. G. (1982b). Cocaine-induced place preference conditioning: Lack of effects of neuroleptics and 6- hydroxydopamine lesions. Brain Research, 253, 195–203.PubMedCrossRefGoogle Scholar
  43. Spyraki, C., Kazandjian, A., & Varonos, D. (1985). Diazepam-induced place preference conditioning: Appetitive and antiaversive properties. Psychopharmaco1ogy, 87, 225–232.CrossRefGoogle Scholar
  44. Stapleton, J. M., Lind, M. D., Merriman, V. J., Bozarth, M. A., & Reid, L. D. (1979). Affective consequences and subsequent effects on morphine self-administration of d-ala2-methionine enkephalin. Physiological Psychology, 7, 146–152.Google Scholar
  45. Stewart, R. B., & Grupp, L. H. (1981). An investigation of the interaction between the reinforcing properties of food and ethanol using the place preference paradigm. Progress in Neuropsychopharmacology, 5, 609–613.CrossRefGoogle Scholar
  46. Strickrod, G., Kimble, D. P., & Smotherman, W. P. (1982). Met-enkephalin effects on associations formed in utero. Peptides, 3, 881–883.CrossRefGoogle Scholar
  47. van der Kooy, D., Kalant, H., Mucha, R. F., & O’Shaughnessy, M. (1983). Motivational properties of ethanol in naive rats as studied by place conditioning. Pharmacology Biochemistry & Behavior, 19, 441–445.CrossRefGoogle Scholar
  48. van der Kooy, D., Mucha, R. F., O’Shaughnessy, M., & Bucenieks, P. (1982). Reinforcing effects of brain microinjections of morphine revealed by conditioned place preference. Brain Research, 243, 107–117.PubMedCrossRefGoogle Scholar
  49. Winer, B. (1971). Statistical principles in experimental design. New York: McGraw-Hill.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Michael A. Bozarth
    • 1
  1. 1.Center for Studies in Behavioral Neurobiology, Department of PsychologyConcordia UniversityMontrealCanada

Personalised recommendations