Studies on Biochemical Mechanisms of Retinal Degeneration

  • Robert E. Anderson
  • Rex D. Wiegand
  • Laurence M. Rapp
  • Maureen B. Maude
  • Muna I. Naash
  • John S. Penn
Part of the Cell and Developmental Biology of the Eye book series (EYE)


Our laboratory is investigating biochemical mechanisms of certain forms of retinal degeneration which specifically affect the photoreceptor cells. One experimental model we use is the albino or pigmented rat retina exposed to constant illumination. Our strategy has been to expose animals to moderate light levels for periods up to five days and analyze for changes in the components of the photoreceptor rod outer segments (ROS) that may result from or contribute to the observed degeneration. Results obtained to date suggest that lipid peroxidation occurs within ROS membranes during light-induced retinal degeneration. In this chapter, we will review briefly results of some of our studies and propose a means by which photoreceptors are protected against lipid peroxidation. Other reviews on this subject have been published by our group (Anderson, et al., 1983; Wiegand, et al., 1984).


Lipid Peroxidation Outer Segment Ferrous Sulfate Photoreceptor Cell Lipid Hydroperoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, R.E., L.M. Rapp, and R.D. Wiegand (1983). Lipid peroxidation and retinal degeneration. Current Eye Res. 3:223–227.CrossRefGoogle Scholar
  2. Armstrong, D., T. Hiramitsu, J. Gutteridge, and S. E. Nilsson (1982). Studies on experimentally induced retinal degeneration. 1. Effect of lipid peroxides on electroretinographic activity in the albino rabbit. Exp. Eye Res. 35:157–171.PubMedCrossRefGoogle Scholar
  3. Armstrong, D., G. Santangelo, and A. Cornell (1981). The distribution of peroxide regulating enzymes in the canine eye. Curr. Eye Res. 1:225–242.PubMedCrossRefGoogle Scholar
  4. Hall, M. and D. Hall (1975). Superoxide dismutase of bovine and frog rod outer segments. Biochem. Biophys. Res. Commun. 67:1199–1204.PubMedCrossRefGoogle Scholar
  5. Hayes, K.C. (1974). Retina degeneration in monkeys induced by deficiencies of vitamin E or A. Invest. Ophthalmol. 13:499–510.Google Scholar
  6. Hiramitsu, T.Y., Y. Majima, Y. Hasegawa, and K. Hirata. (1974). Role of lipid peroxide in the induction of retinopathy by X-irradiation. Acta. Soc. Ophthalmol. Jap. 78:819–825.Google Scholar
  7. Hiramitsu, T., Y. Hasegawa, K. Hirata, I. Nishigaki, and K. Yagi (1976). Lipoperoxide formation in the retina in ocular siderosis. Experientia 32:1324–1325.PubMedCrossRefGoogle Scholar
  8. Kagan, V.E., I.Y. Kuliev, V.B. Spirichaev, A.A. Shvedova, and Yu.P. Kozlov (1981). Accumulation of lipid peroxidation products and depression of retinal electrical activity in vitamin E-deficient rats exposed to high-intensity light. Bull. Exp. Biol. Med. 91:144–147.CrossRefGoogle Scholar
  9. Kagan, V.E., A.A. Shvedova, K.N. Novikov, and Y.P. Kozlov (1973). Light-induced free radical oxidation of membrane lipids in photoreceptors of frog retina. Biochim. Biophys. Acta 330:76–79.PubMedCrossRefGoogle Scholar
  10. Li, Z.-Y., M.O, M. Tso., H.-m. Wang, and D.T. Organisciak, (1985). Amelioration of photic injury in rat retina by ascorbic acid: a histopathologic study. Invest. Ophthalmol. Vis. Sci. 26:1589–1598.PubMedGoogle Scholar
  11. Naash, Muna I. and R.E. Anderson (1984). Characterization of glutathione peroxidase in frog retina. Curr. Eye Res. 3:1299–1304.CrossRefGoogle Scholar
  12. Organisciak, D.T., H.-m. Wang, Z.-Y. Li, and M.O.M. Tso (1985). The protective effect of ascorbate in retinal light damage of rats. Invest. Ophthalmol. Vis. Sci. 25:1580–1588.Google Scholar
  13. Packer, J.E., T.F. Slater, and R.L. Willson (1979). Direct observation of a free radical interaction between vitamin E and vitamin C. Nature 278:737.Google Scholar
  14. Paglia, D.E. and W.N. Valentine (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70:158–169.PubMedGoogle Scholar
  15. Pryor, W.A., M.J. Kaufman, and D.F. Church (1985). Autoxidation of micelle-solubilized linoleic acid. Relative inhibitory efficiencies of ascorbate and ascorbyl palmitate. J. Organic Chem. 50:281–283.CrossRefGoogle Scholar
  16. Rapp, L.M., L.A. Thum, A.P. Tarver, and R.D. Wiegand (1985). Vitamin E and taurine deficiency: effects on the retina in cyclic light-maintained and light-damaged rats. Invest Ophthalmol. Vis. Sci., Supple, 26:131.Google Scholar
  17. Rapp, L.M., R.D. Wiegand and R.E. Anderson (1982). Ferrous ion-mediated retinal degeneration: Role of rod outer segment lipid peroxidation. In Problems of Normal and Genetically Abnormal Retinas, edited by R. Clayton, J. Haywood, H. Reading an A. Wright, Academic Press, pp. 109–119.Google Scholar
  18. Riis, R.C., B.E. Sheffy, E. Loew, et al. (1981). Vitamin E deficiency retinopathy in dogs. Am. J. Vet. Res. 42:74–86.PubMedGoogle Scholar
  19. Robison, W.G., Jr., T. Kuwabara and J.G. Bieri (1979). Vitamin E deficiency and the retina: Photoreceptor and pigment epithelial changes. Invest. Ophthalmol. Vis. Sci. 18:683–690.PubMedGoogle Scholar
  20. Shvedova, A.A., A.S. Sidorov, K.N. Novikov, et al. (1979). Lipid peroxidation and electric activity of the retina. Vision Res. 19:49–55.PubMedCrossRefGoogle Scholar
  21. Stone, W.L. and E.A. Dratz (1982). Selenium and non-selenium glutathione peroxidase activities in selected ocular and non-ocular rat tissues. Exp. Eye. Res. 35:405–412.PubMedCrossRefGoogle Scholar
  22. Stone, W.L., M.L. Katz, M. Lurie, et al. (1979). Effects of dietary vitamin E and selenium on light damage to the rat retina. Photochem. Photobiol. 29:725–730.PubMedCrossRefGoogle Scholar
  23. Tappel, A.L. (1968). Will antioxidant nutrients slow aging processes? Geriatrics 23:97.PubMedGoogle Scholar
  24. Tso, M.O.M., B.J. Woodford, and K.W. Lam (1984). Distribution of ascorbate in normal primate retina and after photic injury: a biochemical, morphological correlated study. Curr. Eye Res. 3:181.PubMedCrossRefGoogle Scholar
  25. Wiegand, R.D., J.G. Jose, L.M. Rapp, and R.E. Anderson (1984). Free Radicals and Damage to Ocular Tissues. In Free Radicals in Biology and Aging, edited by D. Armstrong, et al., Raven Press (New York), in press.Google Scholar
  26. Wiegand, R.D., C.D. Joel, L.M. Rapp, J.C. Nielsen, M.B. Maude, R.E. Anderson (1985). Polyunsaturated fatty acid and vitamin E in rat rod outer segments during light damage. Invest. Ophthalmol. Vis. Sci., in press.Google Scholar
  27. Wiegand, R.D., N.M. Giusto and R.E. Anderson (1982). Lipid changes in albino rat rod outer segments following constant illumination. In Problems of Normal and Genetically Abnormal Retinas, edited by R. Clayton, J. Haywood, H. Reading and A. Wright, Academic Press, pp. 121–128.Google Scholar
  28. Wiegand, R.D., L.M. Rapp, and R.E. Anderson. Ferrous Ion-Induced Retinal Degeneration: Biochemical Changes in Photoreceptor Membranes. Presented to the Association for Research in Vision and Ophthalmology, Sarasota, Florida, May 6–10, 1985.Google Scholar
  29. Wiegand, R.D., N.M. Giusto, L.M. Rapp and R.E. Anderson (1983). Evidence for rod outer segment lipid peroxidation following constant illumination of the rat retina. Invest.Ophthalmol. Vis. Sci. 24:1433–1435.Google Scholar
  30. Yagi, K., S. Matsuoka, H. Ohkawa, N. Ohishi, Y. Takeuchi, and H. Kakai (1977). Lipoperoxide level of the retina of chick embryo exposed to high concentration of oxygen. Clin. Chim. Acta 80:355–360.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Robert E. Anderson
  • Rex D. Wiegand
  • Laurence M. Rapp
  • Maureen B. Maude
  • Muna I. Naash
  • John S. Penn

There are no affiliations available

Personalised recommendations