Skip to main content

Elucidation of the Visual Cycle by Study of Two Retinoid-Binding Proteins

  • Chapter
The Microenvironment and Vision

Part of the book series: Cell and Developmental Biology of the Eye ((EYE))

  • 52 Accesses

Abstract

The visual cycle (Wald, 1968) includes all metabolic reactions of vitamin A known to occur in retina, with the exception of those that generate retinolc acid, a retinoid with no known role in the visual process. A modern version of the visual cycle, shown in Figure 1, is very similar to the cycle outlined by Wald in 1968 except for a few details. Many of the questions of interest at that time remain with us today. The nature of the generation of the 11-cis-configuration in the dark remains unclear. Is the process enzymatic? Is it the aldehyde, alcohol or retinyl ester that is isomerized? In which cell type(s) of the retina does the isomerization take place? How many dehydrogenases function in the visual cycle? How are these reactions controlled? How do retinoids traverse the extracellular space that separates the retinal pigment epithelium (RPE) and neural retina? The answers to these and other questions are not yet known, partly because of the difficulties inherent in dealing with water insoluble substrates and membrane associated enzymes. Until recently, analytical methods available for retinoid separations, especially separation of geometrical isomers, were tedious and not well suited to the task. Currently there is renewed interest in the reactions of the visual cycle, stimulated in part by development of rapid and efficient methods for the separation of retinoids by HPLC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, A.J. and K.J. Martin. 1982. Retinol-binding proteins in bovine interphotoreceptor matrix. Biochem. Biophys. Res. Commun. 108: 1601–1608.

    Article  PubMed  CAS  Google Scholar 

  • Alpern, M. 1971. Rhodopsin kinetics in the human eye. J. Physiol. 217: 447–471.

    PubMed  CAS  Google Scholar 

  • Andrews, J.S. and S. Futterman. 1964. Metabolism of the retina. V. The role of microsomes in vitamin A esterification in the visual cycle. J. BioI. Chem. 239: 4073–4076.

    PubMed  CAS  Google Scholar 

  • Berman, E.R., Horowitz, J., Segal, N., Fisher, S. and L. FeeneyBurns. 1980a. Enzymatic esterification of vitamin A in the pigment epithelium of bovine retina. Biochim. Biophys. Acta 630: 35–46.

    Google Scholar 

  • Berman, E.R., Segal, N., Schneider, A. and L. Feeney. 1980b. An hypothesis for a vitamin A cycle in the pigment epithelium of bovine retina. Neurochem. 1: 113–122.

    Article  CAS  Google Scholar 

  • Bernstein, P.S., Lichtman, J.R. and R.R. Rando. 1985. Nonstereospecific biosynthesis of 11-cis-retinal in the eye. Biochemistry 24: 487–492.

    Article  PubMed  CAS  Google Scholar 

  • Bok, D. and J. Heller. 1976. Transport of retinol from the blood to the retina: an autoradiographic study of the pigment epithelial cell surface receptor for plasma retinol-binding protein.

    Google Scholar 

  • Bok, D., Ong, D.E., and R. Chytil. 1984. Immunocytochemical localization of cellular retinol binding protein in the rat retina. Invest. Ophthalmol. Visual Sci. 25: 877–883.

    CAS  Google Scholar 

  • Bridges, C.D.B. 1976. Vitamin A and the role of the pigment epithelium during bleaching and regeneration of rhodopsin in the frog eye. Exp. Eye Res. 22: 435–455.

    Article  PubMed  CAS  Google Scholar 

  • Bridges, C.D.B. 1984. Retinoids in photosensitive systems. In “The retinoids”. (M.B. Sporn, A.B. Roberts and D.S. Goodman, eds.). Vol 2: 125–176.

    Google Scholar 

  • Bunt-Milam, A.H. and J.C. Saari. 1983. Immunocytochemical localization of two retinoid-binding proteins in vertebrate retina. J. Cell BioI. 97: 703–712.

    Article  CAS  Google Scholar 

  • Bun t-Milam, A.H., Saari, J.C., and D. L. Bredberg. 1985. Characterization of the interstitial space: immunocytochemical and biochemical studies. In “The Interphotoreceptor Matrix in Health and Disease”. (C.D. Bridges and A.J. Adler, eds.). Alan R. Liss, Inc. New York. pp. 151–170.

    Google Scholar 

  • Chader, G.J. 1982. Retinoids in ocular tissues: Binding proteins, transport and mechanism of action. In “cell Biology of the Eye” (D. McDevitt, ed.). Academic Press, Inc., New York. pp. 377–433.

    Google Scholar 

  • Chytil, F. and D.E. Ong. 1982. Cellular retinoid binding proteins. In “The retinoids”. (M.B. Sporn, A.B. Roberts and D.S. Goodman, eds.). Vol. 2: 89–123.

    Google Scholar 

  • Crabb, J.W. and J.C. Saari. 1981. N-terminal sequence homology among retinoid-binding proteins from bovine retina. FEBS Letters 130: 15–18.

    Article  PubMed  CAS  Google Scholar 

  • Dartnall, H.J.A. 1972. Photosensitivity. Handbook of Sensory Physiology Vol. VII/l: 122–145.

    Google Scholar 

  • Dowling, J.E. 1960. Chemistry of visual adaptation in the rat. Nature 188: 114–118.

    Article  PubMed  CAS  Google Scholar 

  • Fong, S.-L., Liou, G. I., Landers, R.A., Alvarez, R.A. and C.D. Bridges. 1984. Purification and characterization of a retinolbinding glycoprotein synthesized and secreted by bovine neural retina. J. Biol. Chem. 259: 6534–6542.

    PubMed  CAS  Google Scholar 

  • Eisenfeld, A.J., Bunt-Milam, A.H. and J.C. saari. 1985. Localization of retinoid-binding proteins in developing rat retina. Exp. Eye Res. in press.

    Google Scholar 

  • Futterman, S. 1963. Metabolism of the retina. III. The role of reduced triphosphopyridine nucleotide in the visual cycle. J. BioI. Chem. 238: 1145–1150.

    CAS  Google Scholar 

  • Futterman, S. 1974. Recent studies on a possible mechanism for visual pigment regeneration. Exp. Eye Res. 18: 89–96.

    Article  PubMed  CAS  Google Scholar 

  • Futterman, S. and J.C. Saari. 1978. Occurrence of 11-cis-retinalbinding proteins restricted to retina. Invest. Ophthalmol. Visual Sci. 16: 768–771.

    Google Scholar 

  • Futterman, S., Saari, J.C. and S. Blair. 1977. Occurrence of a binding protein for 11-cis-retinal in retina. J. Biol. Chem. 252: 3267–3271.

    PubMed  CAS  Google Scholar 

  • Hubbard, R. 1956. Retinene isomerase.J. Gen. Physiol. 39: 935–962.

    Article  PubMed  CAS  Google Scholar 

  • Hubbard, R. and A.D. Colman. 1959. Vitamin A content of the frog eye during light and dark adaptation. Science 130: 977–978.

    Article  PubMed  CAS  Google Scholar 

  • Julia, P., Farres, J. and X. Pares. 1983. Purification and partial characterization of a rat retina alcohol dehydrogenase active with ethanol and retinol. Biochem. J. 213: 547–550.

    PubMed  CAS  Google Scholar 

  • Krinsky, J.I. 1958. The enzymatic esterification of vitamin A. J. Biol. Chem. 232: 881–814.

    PubMed  CAS  Google Scholar 

  • Kuwabara, T. and D. G. Cogan. 1966. Tetrazolium studies on the retina. III. Activity of metabolic intermediates and miscellaneous substrates. J. Histochem. Cytochem. 8: 214–224.

    Article  Google Scholar 

  • Lai, Y.L., Wiggert, B., Liu, Y.P. and G.J. Chader. 1982. Interphotoreceptor retinol-binding proteins: possible transport vehicles between compartments of the retina. Nature 298: 848–849.

    Article  PubMed  CAS  Google Scholar 

  • Lehninger, A.L. 1982. Principles of Biochemistry. Worth Publishers, Inc. New York. p. 266.

    Google Scholar 

  • Lion, F., Rotmans, J.P., Daemen, F.J.M. and S.L. Bonting. 1975. Biochemical aspects of the visual cycle. XXVII. Stereospecificity of the ocular retinol dehydrogenases and the visual cycle. Biochim. Biophys. Acta 384: 383–392.

    Google Scholar 

  • Liou, G.I., Bridges, C.D.B., Fong, S.-L. Alvarez, R.A. and F. Fernandez-Gonzalez. 1982. Vitamin A transport between retina and pigment epithelium: an interstitial protein carrying endogenous retinol. Vision Res. 22: 1457–1467.

    Article  PubMed  CAS  Google Scholar 

  • Newman, E.A. 1984. Regional specialization of retinal glial cell membrane. Nature 308: 155–157.

    Article  Google Scholar 

  • Ostapenko, I.A. and V.V. Furayev, 1973. 9-cis isomerization of alltrans retinal during in vitro regeneration of visual pigment. Nature New Biol. 243: 185–186.

    PubMed  CAS  Google Scholar 

  • Perlman, J.I., Nodes, B.R. and D.R. Pepperberg. 1982. Utilization of retinoids in the bullfrog retina. J. Gen Physiol. 80: 885–913.

    Article  PubMed  CAS  Google Scholar 

  • Rando, R.R. and A. Chang. 1983. Studies on the catalyzed interconversions of vitamin A derivatives. J. Am. Chem. Soc. 105: 2879–2882.

    Article  CAS  Google Scholar 

  • Rotmans, J.P., Daemen, F.J.M. and S.L. Bonting. 1972. XIX. Formation of isorhodopsin from photolyzed rhodopsin by bacterial action. Biochim. Biophys. Acta 267: 583–587.

    Article  PubMed  CAS  Google Scholar 

  • Saari, J.C. and L. Bredberg. 1982. Enzymatic reduction of 11-cisretinal bound to cellular retinal-binding protein. Biochim. Biophys. Acta 716: 266–272.

    PubMed  CAS  Google Scholar 

  • Saari, J.C., Bredberg, L. and G.G. Garwin. 1982. Identification of the endogenous retinoids associated with three cellular retinoid-binding proteins from bovine retina and retinal pigment epithelium. J. BioI. Chern. 257: 13329–13333.

    CAS  Google Scholar 

  • Saari, J.C., Bunt-Milam, A.H., Bredberg, D.L. and G.G. Garwin. 1984. Properties and immunocytochemical localization of three retinoid-binding proteins from bovine retina. Vision Res. 24: 1595–1603.

    Article  PubMed  CAS  Google Scholar 

  • Sarthy, P.V. and A.H. Bunt. 1982. The ultrastructure of isolated glial (Muller) cells from the turtle retina. Anat. Rec. 202: 275–283.

    Article  PubMed  CAS  Google Scholar 

  • Sarthy, P. V. and D.M.K. Lam. 1978. Biochemical studies of isolated glial (Muller) cells from the turtle retina. J. Cell Biol. 78: 675–684.

    Article  PubMed  CAS  Google Scholar 

  • Stubbs, G. W., Saari, J.C. and S. Futterman. 1979. 11-cis-retinalbinding protein from bovine retina. J. Biol. Chem. 254: 8529–8533.

    PubMed  CAS  Google Scholar 

  • Sundelin, J., Das, S.R., Eriksson, U., Rask, L. and P.A. Peterson. 1985. The primary structure of bovine cellular retinoic acidbinding protein. J. Biol. Chem. 260: 6494–6499.

    PubMed  CAS  Google Scholar 

  • Uga, S. and G.K. Smelser. 1973. Comparative study of the fine structure of retinal Muller cells in various vertebrates. Invest. Ophthalmol. 12: 434–448.

    PubMed  CAS  Google Scholar 

  • Vance, D.E. 1983. Metabolism of steroids and lipoproteins. In “Biochemistry” (G. Zubay, coordinating author). Addison-Wesley Pub. Co., Reading, MA. p. 566.

    Google Scholar 

  • Wald, G. 1968. The molecular basis of visual excitation. Science 162: 230–239.

    Article  PubMed  CAS  Google Scholar 

  • Wald, G. and R. Hubbard. 1949. The reduction of retinene to vitamin A in vitro. J. Gen. Physiol. 32: 367–389.

    Article  PubMed  CAS  Google Scholar 

  • Wiggert, B., Bergsma, D.R., Lewis, M. and G.J. Chader. 1977. Vitamin A receptors: retinol binding in neural retina and pigment epithelium. J. Neurochem. 29: 947–954.

    Article  PubMed  CAS  Google Scholar 

  • Wiggert, B.G. and G.J. Chader. 1975. A receptor for retinol in developing retina and pigment epithelium. Exp. Eye Res. 21: 143–151.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikami, S. and G.N. Noll. 1978. Isolated retinas synthesize visual pigments from retinol congeners delivered by liposomes. Science 200: 1393–1395.

    Article  CAS  Google Scholar 

  • Zimmerman, W.F., Lion, F., Daemen, F.J.M. and S.L. Bonting. 1975. Biochemical aspects of the visual process. XXX. Distribution of stereospecific retinol dehydrogenase activities in subcellular fractions of bovine retina and pigment epithelium. Exp. Eye Res. 21: 353–332.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Saari, J.C., Bunt-Milam, A.H., Gaur, V. (1987). Elucidation of the Visual Cycle by Study of Two Retinoid-Binding Proteins. In: Sheffield, J.B., Hilfer, S.R. (eds) The Microenvironment and Vision. Cell and Developmental Biology of the Eye. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4784-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4784-5_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9154-1

  • Online ISBN: 978-1-4612-4784-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics