Skip to main content

Pattern Recognition Networks

  • Chapter
Brains, Machines, and Mathematics
  • 224 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 4

  • Amari, S., 1980, Topographic organization of nerve fields, Bull. Math. Biol. 42: 339–364.

    MATH  MathSciNet  Google Scholar 

  • Amari, S. and Arbib, M.A., 1977, Competition and cooperation in neural nets, in Systems Neuroscience (J. Metzler, Ed.), Academic Press, pp. 119–165.

    Google Scholar 

  • Barlow, H.B., 1953, Summation and inhibition in the frog’s retina, J. Physiol. 119: 69–88.

    Google Scholar 

  • Barlow, H.B., 1969, Trigger features, adaptation and economy of impulses, in Information Processing in the Nervous System (K.N. Leibovic, Ed.), Springer-Verlag, pp. 209–230.

    Google Scholar 

  • Barnes, D.B., 1986a, From genes to cognition, Science 231: 1066–1068.

    Article  Google Scholar 

  • Barnes, D.B., 1986b, Lessons from snails and other models, Science 231: 1246–1249.

    Article  Google Scholar 

  • Blakemore, C. and Cooper, G. 1970, Development of the brain depends on the visual environment, Nature 228: 477–478.

    Article  Google Scholar 

  • Block, H.D., 1962, The perceptron: A model for brain functioning, 1. Rev. Mod. Phys. 34: 123–135.

    Article  MATH  MathSciNet  Google Scholar 

  • Churchland, P.S., 1986, Neurophilosophy: Toward a Unified Science of the Mind/ Brain, A Bradford Book/The MIT Press.

    Google Scholar 

  • Cooper, L.N., Liberman, F., and Oja, E., 1979, A theory for the acquisition and loss of neuron specificity in visual cortex, Biological Cybernetics 33: 9–28.

    Article  MATH  MathSciNet  Google Scholar 

  • Craik, K.J.W., 1943, The Nature of Explanation, Cambridge University Press.

    Google Scholar 

  • Didday, R. L., 1970, The simulation and modelling of distributed information processing in the frog visual system. Ph.D. Thesis, Stanford University.

    Google Scholar 

  • Fregnac, Y. and Imbert, M., 1978, Early development of visual cortical cells in normal and dark-reared kittens: Relationship between orientation selectivity and ocular dominance, J. Physiol. London 278: 27–44.

    Google Scholar 

  • Fukushima, N., 1980, Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position, Biological Cybernetics 36: 193–202.

    Article  MATH  MathSciNet  Google Scholar 

  • Gregory, R.L., 1969, On how so little information controls so much behavior, in Towards a Theoretical Biology. 2, Sketches (C.H. Waddington, Ed.), Edinburgh University Press.

    Google Scholar 

  • Grossberg, S., 1982, Studies of Mind and Brain, Reidel.

    Book  MATH  Google Scholar 

  • Hartline, H.K., 1938, The response of single optic nerve fibers of the vertebrate eye to illumination of the retina, Am. J. Physiol. 121: 400–415.

    Google Scholar 

  • Hirsch, H., and Spinelli, D.N., 1970, Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats, Science 168: 869–871.

    Article  Google Scholar 

  • Hubel, D.H., and Wiesel, T.N., 1962, Receptive fields, binocular and functional architecture in the cat’s visual cortex. J. Physiol. 160: 1–154.

    Google Scholar 

  • Hubel, D.H., and Wiesel, T.N., 1965, Binocular interaction in striate cortex of kittens reared with artificial squint, J. Neurophysiol. 28: 1041–1059.

    Google Scholar 

  • Kandel, E., 1978, A Cell Biological Approach to Learning, Grass Lecture No. 1, Society for Neuroscience.

    Google Scholar 

  • Kilmer, W.L., and Olinski, M., 1974, Model of a plausible learning scheme for CA3 hippocampus, Kybernetik 16: 133–144.

    Article  Google Scholar 

  • Kohonen, T., 1982, in Competition and Cooperation in Neural Nets (S. Amari and M.A. Arbib, Eds.), Lecture Notes in Biomathematics, Vol. 45, Springer-Verlag.

    Google Scholar 

  • Lara, R., 1983, A model of the neural mechanisms responsible for stimulus specific habituation of the orienting reflex in vertebrates, Cognition and Brain Theory 6: 463–482.

    Google Scholar 

  • Lettvin, J.Y., Maturana, H., McCulloch, W.S., and Pitts, W.H., 1959, What the frog’s eye tells the frog’s brain, Proc. IRE. 1940–1951.

    Google Scholar 

  • Milner, P.M., 1957, The cell assembly: Mark II, Psych. Rev. 64: 242.

    Article  Google Scholar 

  • Minsky, M.L., and Papert, S., 1969, Perceptrons: An Essay in Computational Geometry, The MIT Press.

    Google Scholar 

  • Nilsson, N., 1965, Learning Machines, McGraw-Hill.

    MATH  Google Scholar 

  • Pitts, W.H., and McCulloch, W.S., 1947, How we know universals, the perception of auditory and visual forms. Bull. Math. Biophys. 9: 127–147.

    Article  Google Scholar 

  • Pribram, K.H., Spinelli, D.N., and Kamback, M.C., 1967, Electrocortical correlates of stimulus response and reinforcement, Science 157: 94–96.

    Article  Google Scholar 

  • Rosenblatt, F., 1962, Principles of Neurodynamics, Spartan.

    MATH  Google Scholar 

  • Rumelhart, D.E., and Zipser, D., 1985, Feature discovery by competitive learning, Cognitive Science 9: 75–112.

    Article  Google Scholar 

  • Sklansky, J., and Wassel, G.N., 1981, Pattern Classifiers and Trainable Machines, Springer-Verlag.

    Book  MATH  Google Scholar 

  • Sokolov, E., 1975, Neuronal mechanisms of the orienting reflex, in Neuronal Mechanisms of the Orienting Reflex (E. Sokolov and E. Vinogradova, Eds.), Lawrence Erlbaum Associates.

    Google Scholar 

  • Spinelli, D.N., 1970, OCCAM, A computer model for a content addressable memory in the central nervous system, in Biology of Memory (K.H. Pribram and D.E. Broadbent, Eds.), Academic Press, pp. 293–306.

    Google Scholar 

  • Spinelli, D.B., and Jensen, F.E., 1979, The mirror of experience, Science 203: 75–78.

    Article  Google Scholar 

  • Spira, P.M., 1969, The time required for group multiplication, J. Assoc. Comp. Mach. 16: 235–243.

    Article  MATH  MathSciNet  Google Scholar 

  • Spira, P.M., and Arbib, M.A., 1967, Computation times for finite groups, semigroups and automata, Proc. IEEE 8th Ann. Symp. Switching and Automata Theory, pp. 291–295.

    Google Scholar 

  • von der Malsburg, C., 1973, Self-organizing of orientation sensitive cells in the striate cortex. Kybernetik 14: 85–100.

    Article  Google Scholar 

  • von der Malsburg, C., 1979, Development of ocularity domains and growth behavior of axon terminals, Biological Cybernetics 32: 49–62.

    Article  Google Scholar 

  • Winograd, S., 1967, On the time required to perform multiplication, J. Assoc. Comp. Mach. 14: 793–802.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Arbib, M.A. (1987). Pattern Recognition Networks. In: Brains, Machines, and Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4782-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4782-1_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9153-4

  • Online ISBN: 978-1-4612-4782-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics