NTP Caps and Possible Phase Changes at Polymer Ends

  • Terrell L. Hill
Part of the Springer Series in Molecular Biology book series (SSMOL)

Abstract

The principal topic in Chapter 7 was a treatment of aggregation of NTP subunits accompanied by fast NTPase activity at the polymer tips. Actin and microtubules were believed, at one time, to behave in this relatively simple way. As of this writing, it seems clear that, in both cases, NTP subunits actually penetrate (or survive) into the polymer ends by virtue of addition of subsequent subunits: conversion of an added NTP subunit into an NDP subunit is in fact not fast compared to on-off transitions.1 Thus there may be a collection or “cap” of surviving NTP subunits at each polymer end. Though this much seems clear, further details are in the process of being worked out and are by no means generally agreed upon. For this reason, in this chapter we bypass biochemical details (except for illustrative examples in Section 24) and devote the bulk of the chapter to a consideration of two-phase behavior at the polymer ends. The two phases referred to are a polymer end either with or without an NTP cap. This subject can be dealt with without a commitment to a particular detailed biochemical model; we merely assume that some unspecified biochemical mechanism exists that generates two-phase activity (see Section 24 for examples). Actually, so far there is evidence for two-phase activity in microtubules2–4 but not in actin.

Keywords

Hydrolysis Summing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carlier, M.F. and Pantaloni, D. (1981) Biochemistry 20, 1918.PubMedCrossRefGoogle Scholar
  2. 2.
    Mitchison, T. and Kirschner, M.W. (1984) Nature 312, 232.PubMedCrossRefGoogle Scholar
  3. 3.
    Mitchison, T. and Kirschner, M.W. (1984) Nature 312, 237.PubMedCrossRefGoogle Scholar
  4. 4.
    Mitchison, T. and Kirschner, M.W. (1984) in Molecular Biology of the Cytoskeleton, eds. Borisy, G.G., Cleveland, D.W., and Murphy, D.B. (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY), p. 27.Google Scholar
  5. 5.
    Carlier, M.F. and Pantaloni, D. (1986) Biochemistry 25, 7789.PubMedCrossRefGoogle Scholar
  6. 6.
    Carlier, M.F., Hill, T.L, and Chen, Y. (1984) Proc. Natl. Acad. Sci. USA 81, 771.PubMedCrossRefGoogle Scholar
  7. 7.
    Pantaloni, D., Hill, T.L., Carlier, M.F., and Korn, E D. (1985) Proc. Natl. Acad. Sci. USA 82, 7207.PubMedCrossRefGoogle Scholar
  8. 8.
    Hill, T.L. (1986) Biophys. J. 49, 981.PubMedCrossRefGoogle Scholar
  9. 9.
    Hill, T.L. and Carlier, M.F. (1983) Proc. Natl. Acad. Sci. USA 80, 7234.PubMedCrossRefGoogle Scholar
  10. 10.
    Hill, T.L. and Chen, Y. (1984) Proc. Natl. Acad. Sci. USA 81, 5772.PubMedCrossRefGoogle Scholar
  11. 11.
    Chen, Y. and Hill, T.L. (1985) Proc. Natl. Acad. Sci. USA 82, 1131.PubMedCrossRefGoogle Scholar
  12. 12.
    Hill, T.L. (1984) Proc. Natl. Acad. Sci. USA 81, 6728.PubMedCrossRefGoogle Scholar
  13. 13.
    Rubin, R.J., to be published.Google Scholar
  14. 14.
    Hill, T.L. (1985) Proc. Natl. Acad. Sci. USA 82, 4404.PubMedCrossRefGoogle Scholar
  15. 15.
    Hill, T.L. (1963) Systems Thermodynamics of Small, Part I (Benjamin, New York).Google Scholar
  16. 16.
    Neidl, C. and Engel, J. (1979) Eur. J. Biochem. 101, 163.PubMedCrossRefGoogle Scholar
  17. 17.
    Nicklas, R.B. (1983) J. Cell Biol. 97, 542.PubMedCrossRefGoogle Scholar
  18. 18.
    Hill, T.L. (1977)Free Energy Transduction in Biology (Academic, New York).Google Scholar
  19. 19.
    DeRobertis, E.D.P. and DeRobertis, E.M.F. (1980) Cell and Molecular Biology (Saunders, Philadelphia), 7th Ed., p. 391.Google Scholar
  20. 20.
    Nicklas, R.B. (1965) J. Cell Biol. 25, 119.PubMedCrossRefGoogle Scholar
  21. 21.
    Mitchison, T. (1986) J. Cell Science (Suppl. 5) (in press).Google Scholar
  22. 22.
    Hill, T.L. (1985) Proc. Natl. Acad. Sci. USA 82, 431.PubMedCrossRefGoogle Scholar
  23. 23.
    Chen, Y. and Hill, T.L. (1985) Proc. Natl. Acad. Sci. USA 82, 4127.PubMedCrossRefGoogle Scholar
  24. 24.
    Wegner, A. (1976) J. Mol. Biol. 108,139.PubMedCrossRefGoogle Scholar
  25. 25.
    Hill, T.L. and Kirschner, M.W. (1982) Int. Rev. Cytol. 78, 1.PubMedCrossRefGoogle Scholar
  26. 26.
    Chen, Y. and Hill, T.L. (1983) Proc. Natl. Acad. Sci. USA 80, 7520.PubMedCrossRefGoogle Scholar
  27. 27.
    Horio, T. and Hotani, H. (1986) Nature 321, 605.PubMedCrossRefGoogle Scholar
  28. 28.
    Walker, R.A., Pryer, N.K., Cassimeris, L.U., Soboeiro, M., and Salmon, E.D. (1986) J. Cell Biol. 103, 432a.Google Scholar
  29. 29.
    Carlier, M.F, Melki, R, Pantaloni, D., Hill, T.L, and Chen, Y. (1987) Proc. Natl. Acad. Sci. USA 84 (in press).Google Scholar
  30. 30.
    Magnus, W. and Oberhettinger, F. (1949) Formulas and Theorems for the Special Functions of Mathematical Physics (Chelsea, New York), p. 33.Google Scholar
  31. 31.
    Goel, N.S. and Richter-Dyn, N. (1974) Stochastic Models in Biology (Academic, New York), p. 10Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Terrell L. Hill
    • 1
  1. 1.National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUSA

Personalised recommendations