Genetic Concepts and Techniques

  • Urvashi Surti
Part of the Clinical Perspectives in Obstetrics and Gynecology book series (CPOG)

Abstract

The understanding of the separate molar syndromes has been much advanced by the application of genetic techniques of chromosome banding. These techniques allow not only for the identification of each chromosome but also for the discrimination between the two homologues (one paternal and one maternal) of chromosomes 1,3,4,9,13–16,21,22;1–6 in addition, the parental origin of the chromosomes of complete and partial hydatidiform moles could be determined. Analysis of polymorphic enzyme loci,3,6 human lymphocyte antigens (HLA) specificities.7 and, more recently, restriction fragment length polymorphisms in DNA using cloned DNA probes have also been utilized to this end.8,9

Keywords

Cellulose Toxicity Lymphoma Agarose Adenosine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kajii T, Ohama K. Androgenetic origin of hydatidiform mole, Nature. 1977; 2658:633–634.CrossRefGoogle Scholar
  2. 2.
    Wake N, Takagi N, Sasaki M: Androgenesis as a cause of hydatidiform mole. J Natl Cancer Inst. 1978; 60:51–57.PubMedGoogle Scholar
  3. 3.
    Jacobs PA, Wilson CM, Sprenkle JA, et al. Mechanism of origin of complete hydatidiform moles, Nature. 1980; 286:714–716.PubMedCrossRefGoogle Scholar
  4. 4.
    Lawler SD, Fisher RA, Pickthall, VJ, et al. Genetic studies on hydatidiform moles. 1. The origin of partial moles, Cancer Genet Cytogenet. 1982; 5:309–320.PubMedCrossRefGoogle Scholar
  5. 5.
    Jacobs PA, Szulman AE, Funkhauser J, et al. Human triploidy: relationship between parental origin of the additional haploid complement and development of partial hydatidiform mole, Ann Hum Genet. 1982; 46:223–231.PubMedCrossRefGoogle Scholar
  6. 6.
    Lawler DS, Povey S, Fisher RA, et al. Genetic studies on hydatidiform moles. II. The origin of complete moles, Ann Hum Genet. 1982;46:209–231.PubMedCrossRefGoogle Scholar
  7. 7.
    Yamashita K, Wake N, Tseuno A, et al. A further HLA study of hydatidiform moles, Gynecol Oncol. 1981; 11:23–28.PubMedCrossRefGoogle Scholar
  8. 8.
    Surti U, Szulman AE, Wagner K, et al. Tetraploid partial hydatidiform moles: two cases with a triple paternal contribution and a 92,XXXY karyotype. Human Genet. 1986; 72:15–21.CrossRefGoogle Scholar
  9. 9.
    Surti U, Leppert M, White R. Analysis of hydatidiform moles by RFLPs and chromosome heteromorphisms. Am J Hum Genet. 1983;35:72A.Google Scholar
  10. 10.
    Davis JR, Surwit EA, Perada Garay J, et al. Sex assignment in gestational trophoblastic neoplasia. Am J Obstet Gynecol. 1984; 148:722–725.PubMedGoogle Scholar
  11. 11.
    Sugimori H, Kashimura Y, Kashimura M, Taki I: Nuclear DNA content of trophoblastic tumors. Acta Cytologica. 1978; 22:542–545.PubMedGoogle Scholar
  12. 12.
    Sarkar, S, Kacinski BM, Kohorn EI, et al. Demonstration of myc and ras oncogene expression by hybridization in situ in hydatidiform mole and in the BeWo choriocarcinoma cell line. Am J Obstet Gynecol. 1986; 154:390–393.PubMedGoogle Scholar
  13. 13.
    Szulman AE, Surti U. The syndromes of hydatidiform mole. I. Cytogenetic and morphologic correlations, Am J Obstet Gynecol. 1978;131:665–671.PubMedGoogle Scholar
  14. 14.
    Szulman AE, Surti U. The syndromes of hydatidiform mole. II. Morphologic evolution of the complete and partial mole. Am J Obstet Gynecol. 1978; 132:20–27PubMedGoogle Scholar
  15. 15.
    Caspersson T, Lomakka G, Zech L. The 24 fluorescence patterns of human metaphase chromosomes distinguishing characters and variability. Hereditas. 1971; 67:89–102.CrossRefGoogle Scholar
  16. 16.
    An International System for Human Cytogenetic Nomenclature, ISCN. vol 21, no 1. New York, S Karger Publishers, 1985.Google Scholar
  17. 17.
    Okamoto E, Studies on androgenetic origin of complete hydatidiform moles. J Hiroshima Univ Sch Med. 1985; 33(1)69–92.Google Scholar
  18. 18.
    Lawler SD. Genetic studies on hydatidiform moles, In: Human Trophoblast Neoplasms, Pattillo, RA, Hussa RO (eds). New York, Plenum Press, 1984, pp 147–163.Google Scholar
  19. 19.
    Surti U, Szulman AE, O’Brien S. Complete (classic) hydatidiform mole, with 46,XY karyotypeof paternal origin. Human Genet. 1979;51:153–155.CrossRefGoogle Scholar
  20. 20.
    Surti U, Szulman AE, O’Brien S. Dispermic origin with 46,XY karyotype, AmJ Obstet Gynecol. 1982; 144:84–87.Google Scholar
  21. 21.
    Ohama K, Kajii T, Okamoto E, et al. Dispermic origin ofXY hydatidiform moles, Nature. 1981; 292:551–552.PubMedCrossRefGoogle Scholar
  22. 22.
    Pattillo, RA, Sasaki S, Katayama KP, et al. Genesis of 46,XY hydatidiform mole, Am J Obstet Gynecol. 1981; 141: 104–105.PubMedGoogle Scholar
  23. 23.
    Kajii T, Kurashiege H, et al. XY and XX complete moles: Clinical and morphologic correlations. Am J Obstet Gynecol. 1984; 150:57–64.PubMedGoogle Scholar
  24. 24.
    Wake T, Seki T, Fujita H, et al. Malignant potential of homozygous and heterozygous complete moles. Cancer Res. 1984; 44:1226–1230.PubMedGoogle Scholar
  25. 25.
    O’Brien SJ, ShannonJR, Gail MH: A molecular approach to the identification and individualization of human and animal cells in culture: isozyme and allozyme genetic signatures. In Vitro. 1980; 16(2):119–135.PubMedCrossRefGoogle Scholar
  26. 26.
    Couillin P, Hors J, Boue J, et al. Identification of the origin of triploidy by HLA markers. Human Genet. 1978; 41:35–44.CrossRefGoogle Scholar
  27. 27.
    Southern EM. Application of DNA analysis to mapping the human genome. Cytogenet Cell Genet. 1982; 32:52–57.PubMedCrossRefGoogle Scholar
  28. 28.
    Vejerslev LO, Mogensen B, Olsen S. Hydatidiform mole. Preliminary results from the current Danish investigation. Abstract. Second World Congress on Trophoblastic Neoplasms. International Society for the Study of Trophoblast, Singapore, November 12–14, 1984,6–7.Google Scholar
  29. 29.
    Kajii T, Nikawa N: Origin oftriploidy and tetraploidy in man: 11 cases with chromosome markers. Cytogenet Cell Genet. 1977; 18: 109–125.PubMedCrossRefGoogle Scholar
  30. 30.
    Barton SC, Surani MAH, Norris ML: Role of paternal and maternal genomes in mouse development. Nature. 1984; 311:374–376.PubMedCrossRefGoogle Scholar
  31. 31.
    Honore LH, Poland BJ: The association of hydatidiform mole and trisomy 2. Obstet Gynecol. 1974; 43:232–237.PubMedGoogle Scholar
  32. 32.
    Berkowitz RS, Sandstrom M, Goldstein DP, Dirscoll SG. 45,X Complete hydatidiform mole. GynecolOncol. 1982; 14:279–283.Google Scholar
  33. 33.
    Wu FYW. Recurrent hydatidiform mole. A case report of nine consecutive molar pregnancies. Obstet Gynecol. 1973; 41:200–209.PubMedGoogle Scholar
  34. 34.
    Wake N, Tanaka K, Chapman V, et al. Chromosomes and cellular origin of choriocarcinoma. Cancer Res. 1981; 41:3137–3143.PubMedGoogle Scholar
  35. 35.
    Sasaki S, Katayama PK, Roesler M, et al. Cytogenetic analysis of choriocarcinoma cell lines. Acta Obstet Gynaecol Jpn. 1982; 34:2253–2256.Google Scholar
  36. 36.
    Sheppard DM, Fisher RA, Lawler SD: Karyotypic analysis and chromosome polymorphisms in four choriocarcinoma cell lines. Cancer Genet Cytogenet. 16:251–258, 1985.PubMedCrossRefGoogle Scholar
  37. 37.
    Ojeifo JO, Habibian R, Surti U. Sex chromatin study of gestational trophoblastic disease. (inpress)Google Scholar
  38. 38.
    Naylor SL, Chin WW, Goodman HM, et al. Chromosome assignment of genes encoding the alpha and beta subunits of glycoprotein hormones in man and mouse. Somatic Cell Genetics. 1983; 9:757–770.PubMedCrossRefGoogle Scholar
  39. 39.
    Hoshina M, Boothby M, Hussa R, et al. Linkage of human chorionic gondaotrophin and placental lactogen biosynthesis to trophoblast differentiation and tumorigenesis. Placenta. 1985, 6: 163–172.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Urvashi Surti

There are no affiliations available

Personalised recommendations