Advertisement

Methods for Numerical Simulation of Leading Edge Vortex Flow

  • H. W. M. Hoeijmakers
Part of the ICASE NASA LaRC Series book series (ICASE/NASA)

Summary

A review is presented of computational methods to simulate the aerodynamics of configurations with leading-edge vortex flow. The various methods in use at present are discussed in some detail, primarily with a view towards three-dimensional steady flow applications. The strengths and weaknesses of the methods are indicated and results of different methods are compared and discussed.

Keywords

Vortex Core Vortex Flow Vortex Sheet Vortex Breakdown Delta Wing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peake, D.J.; Tobak, M.: Three-dimensional Interactions and Vortical Flows with Emphasis on High Speeds. NASA TM 81169, 1980, also AGARDograph 252, 1980.Google Scholar
  2. 2.
    Ashley, H.; and Landahl, M.T.: Aerodynamics of Wings and Bodies. Adison-Wesley Publ. Co. Inc., 1965.Google Scholar
  3. 3.
    Sytsma, H.A.; Hewitt, B.L.; Rubbert, P.E.: A Comparison of Panel Methods for Subsonic Flow Computation. AGARD AG 241, 1979.Google Scholar
  4. 4.
    Holst, T.L.; Slooff, J.W.; Yoshihara, H.; Ballhaus Jr., W.F.: Applied Computational Transonic Aerodynamics. AGARDograph 266, 1982.Google Scholar
  5. 5.
    Polhamus, E.C.: Applying Slender Wing Benefits to Military Aircraft. J. Aircraft, Vol. 21, No.8, 1984, pp. 545–559.CrossRefGoogle Scholar
  6. 6.
    Szodruch, J; Ganzer, U.: On the Lee-Side Flow for Slender Delta Wings at High Angle of Attack. AGARD-CP-247, 1979, Paper 21.Google Scholar
  7. 7.
    Legendre, R.: Ecoulement au Voisinage de la Pointe Avant d’une Aile à Forte Fleche aux Incidences Moyennes. La Rech. Aéro. Vol. 30, 1952, pp. 3–8; Vol. 31, 1952, pp. 3–6 and Vol. 35, 1952, pp. 7–8.MathSciNetGoogle Scholar
  8. 8.
    Earnshaw, P.B.: An Experimental Investigation of the Structure of a Leading-Edge Vortex. ARC R M No. 3281, 1962.Google Scholar
  9. 9.
    Wentz, W.H.; McMahon, M.C.: An Experimental Investigation of the Flow Fields about Delta and Double-Delta Wings at Low Speeds. NASA CR 521, 1966.Google Scholar
  10. 10.
    Fink, P.T.; Taylor, J.: Some Early Experiments on Vortex Separation. ARC R M No. 3489, 1967.Google Scholar
  11. 11.
    Hummel, D.; On the Vortex formation over a Slender Wing at Large Incidence. AGARD-CP-247, 1979, Paper 15.Google Scholar
  12. 12.
    Verhaagen, N.G.: An Experimental Investigation of the Vortex Flow over Delta and Double-Delta Wings at Low Speeds. AGARD-CP-342, 1983, Paper 7.Google Scholar
  13. 13.
    Luckring, J.M.: Aerodynamics of Strake-Wing Interactions, J. Aircraft, Vol. 16, No. 11, 1979, pp. 756–762.CrossRefGoogle Scholar
  14. 14.
    Brennenstuhl, U.; Hummel, D.: Vortex Formation over Double-Delta-Wings. ICAS Paper 82–6.6.3, 1982.Google Scholar
  15. 15.
    Manor, D.; Wentz, Jr. W.H.: Flow over Double-Delta Wing and Wing-Body at High J. Aircraft, Vol. 22, No.1, 1985, pp. 78–82.CrossRefGoogle Scholar
  16. 16.
    Smith, J.H.B.: Theoretical Modelling of Three-Dimensional Vortex Flows in Aerodynamics. AGARD-CP-342, 1983, Paper 17.Google Scholar
  17. 17.
    Miller, D.S.; Wood, R.M.: An Investigation of Wing Leading-Edge Vortices at Supersonic Speeds. AlAA Paper 83–1816, 1983.Google Scholar
  18. 18.
    Vorropoulos, G.; Wendt, J.F.: Laser Velocimetry Study of Compressibility Effects on the Flow Field of a Delta Wing. AGARD-CP-342, 1983, Paper 9.Google Scholar
  19. 19.
    Bollay, W.: A Nonlinear Wing Theory and Its Application to Rectangular Wings of Small Aspect Ratio, ZAMM, Vol. 19, pp. 21–35, 1939.MATHCrossRefGoogle Scholar
  20. 20.
    Gersten, K: Nichlineare Tragflächentheorie insbesondere für Tragflügel mit kleinem Seitenverhältnis. Ing. Arch. Vol. 30, 1961, pp. 431–452. Also AGARD Rept. 342, 1961.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Polhamus, E.C.: A Concept of the Vortex Lift of Sharp-Edged Delta Wings Based on a Leading-Edge Suction Analogy. NASA TN D-3767, 1966.Google Scholar
  22. 22.
    Lamar, J.E.: Analysis and design of strake-wing configurations. J. Aircraft, Vol. 17, No.1, 1980, pp. 20–27.CrossRefGoogle Scholar
  23. 23.
    Murman, E.M.; Stremel, P.M.: A Vortex Wake Capturing Method for Potential Flow Calculations. AlAA Paper 82–0947, 1982.Google Scholar
  24. 24.
    Steinhof, J.; Suryanarayanan, K.: The Treatment of Vortex Sheets in Compressible Potential Flows, AlAA Paper 83–1881, 1983.Google Scholar
  25. 25.
    Brown, C.E.; Michael, W.H.: Effect of Leading-Edge Separation on the Lift of a Delta Wing. J. of Aeron. Sciences, Vol. 21, 1954, pp. 690–694.MATHGoogle Scholar
  26. 26.
    Mangler, K.W.; Smith, J.H.B.: A Theory of the Flow past a Slender Delta Wing with Leading-Edge Separation. Proc. Roy. Soc. A, Vol. 251, 1959, pp. 200–217.MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    Smith, J.H.B.: Improved Calculations of Leading-Edge Separation from Slender, Thin, Delta Wings. Proc. Roy. Soc. London, A 306, 1968, pp. 67–90. Also RAE TR 66070, 1966.ADSMATHCrossRefGoogle Scholar
  28. 28.
    Clark, R.W.: Non-Conical Flow past Slender Wings with Leading-Edge Vortex Sheets. RAE TR 76037, 1976.Google Scholar
  29. 29.
    Sacks, A.H.; Lundberg, R.E.; Hanson, Ch.W.: A Theoretical Investigation of the Aerodynamics of Slender Wing-Body Combinations Exhibiting Leading-Edge Separation. NASA CR-719, 1967.Google Scholar
  30. 30.
    Xieyuan, Y.: Roll-Up of Strake Leading/Trailing-Edge Vortex Sheets for DoubleDelta Wings. J. Aircraft, Vol. 22, No.1, 1985, pp. 87–89.CrossRefGoogle Scholar
  31. 31.
    Fink, P.T.; Soh, W.K.: Calculation of Vortex Sheets in Unsteady Flow and Applications in Ship Hydrodynamics. Proc. 10th Symposium on Naval Hydrodynamics, Cambridge, Mass., 1974, pp. 463–491.Google Scholar
  32. 32.
    Moore, D.W.: A Numerical Study of the Roll-Up of a Finite Vortex Sheet. JFM, 63, 1974, pp. 225–235.ADSMATHCrossRefGoogle Scholar
  33. 33.
    Maskew, B.: Subvortex Technique for the Close Approach to a Discretized Vortex Sheet. J. Aircraft, Vol. 14, No.2, 1977, pp. 188–193.CrossRefGoogle Scholar
  34. 34.
    Peace, A.J.: A Multi-Vortex Model of Leading-Edge Vortex Flows. Int. J. Num. Meth. in Fluids, Vol. 3, 1983, pp. 543–565.ADSMATHCrossRefGoogle Scholar
  35. 35.
    Maskew, B.; Rao, B.M.: Calculation of Vortex Flows on Complex Configurations. ICAS Paper 82–6.2.3, 1982. See also Flows with Leading-Edge Vortex Separation. NASA CR 165858, 1982.Google Scholar
  36. 36.
    Nathman, J.K.: Estimation of Wake Roll-Up over Swept Wings, AlAA Paper 84–2174, 1984.Google Scholar
  37. 37.
    Hoeijmakers, H.W.M.; Vaatstra, W.; Verhaagen, N.G.: On the Vortex Flow over Delta and Double-Delta Wings. J. of Aircraft, Vol. 20, No.9, 1983, pp. 825–832.CrossRefGoogle Scholar
  38. 38.
    Hoeijmakers, H.W.M.: Numerical Computation of Vortical Flow about Wings. VKI-LS Computational Fluid Dynamics, 1984. Also NLR MP 83073 U, 1983.Google Scholar
  39. 39.
    Verhaagen, N.G.; Kruisbrink, A.C.H.: The Entrainment Effect of a Leading-Edge Vortex. AlAA Paper 85–1584, 1985.Google Scholar
  40. 40.
    De Bruin, A.C.: Laminar and Turbulent Boundary-Layer Calculations on the Leeward Surface of a Slender Delta Wing at Incidence. NLR MP 84040 U, 1984.Google Scholar
  41. 41.
    Wai, J.C.; Baillie, J.C.; Yoshihara, H.: Computation of Turbulent Separated Flows over Wings. Proc. 3rd Symp. on Num. and Physical Aspects of Aerod. Flows, Long Beach, Calif., Jan. 1985, Paper 11.Google Scholar
  42. 42.
    Dejarnette, F.R.; Woodson, S.H.: Numerical and Experimental Determination of Secondary Separation on Delta Wings in Subsonic Flow. AlAA Paper 84–2175, 1984.Google Scholar
  43. 43.
    Bakker, P.G.: Private communication, Delft University of Technology, Delft, The Netherlands, May 1985.Google Scholar
  44. 44.
    Frink, N.T.: Analytical Study of Vortex Flaps on Highly Swept Delta Wings. ICAS Paper 82–6.7.2, 1982.Google Scholar
  45. 45.
    Erickson, G.E.: Application of the Vortex Sheet Theory to Slender Wings with Leading-Edge Vortex Flaps. AlAA Paper 83–1813, 1983.Google Scholar
  46. 46.
    Hoffler, K.D.; Rao, D.M.: An Investigation of the Tabled Vortex Flap. AlAA Paper 84–2173, 1984.Google Scholar
  47. 47.
    Belotserkovskii, S.M.: Calculation of the Flow about Wings of Arbitrary Planform at a Wide Range of Angles of Attack. RAE Lib. Transl. 1433, 1968.Google Scholar
  48. 48.
    Rehbach, C.: Etude Ntmérique de Nappes Tourbillonnaires Issues d’une Ligne de Découllement pres du Bord d’Attaque. Rech. Aerosp. No. 1973–6, 1973, pp. 325–330.Google Scholar
  49. 49.
    Rehbach, C.: Numerical Investigation of Leading-Edge Vortex for Low-Aspect Ratio Thin Wings. AIAA Journal, Vol. 14, No.2, 1976, pp. 253–255.ADSCrossRefGoogle Scholar
  50. 50.
    Kandil, O.A.; Balakrishnan, L.: Recent Improvements in the Prediction of the Leading and Trailing Edge Vortex Cores of Delta Wings. AIAA Paper 81–1263, 1981.Google Scholar
  51. 51.
    Rusak, Z.; Wasserstrom, E.; Seginer, A.: Numerical Calculation of Nonlinear Aerodynamics of Wing-Body Configurations. AIAA Journal, Vol. 21, No.7, 1983, pp. 929–936.ADSMATHCrossRefGoogle Scholar
  52. 52.
    Johnson, F.T.; Tinoco, E.N.; Lu, P.; Epton, M.A.: Three-Dimensional Flow over Wings with Leading-Edge Vortex Separation, AIAA Journal, Vol. 18, No.4, 1980, pp. 367–380. Also AIAA Paper 79–0282, 1979.MathSciNetADSMATHCrossRefGoogle Scholar
  53. 53.
    Johnson, F.T.; Lu, P.; Tinoco, P.; Epton, M.A.: An Improved Method for the Solution of Three-Dimensional Leading-Edge Vortex Flows. Volume I - Theory Document, NASA CR 3278. Volume II - User’s Guide and Programmer’s Document, 1980.Google Scholar
  54. 54.
    Luckring, J.M.; Schoonover Jr. W.E.; Frink, N.T.: Recent Advances in Applying Free Vortex Sheet Theory for the Estimation of Vortex Flow Aerodynamics. AIAA Paper 82–0095, 1982.Google Scholar
  55. 55.
    Hoeijmakers, H.W.M.; Bennekers, B.: A Computational Model for the Calculation of the Flow About Wings with Leading-Edge Vortices. AGARD CP-247 Paper 25, 1979Google Scholar
  56. 56.
    Verhaagen, N.G.: Measurement of the Pressure Distribution on a Biconvex Delta Wing of Aspect Ratio 1, Unpubl. Rep. Dep. Aero. Eng. Delft University of Technology, 1979.Google Scholar
  57. 57.
    Hummel, D.; Redeker, G.: Experimentelle Bestimmung der gebundene Wirbellinien sowie des Stromungs-Verlaufs in der Umgebung der Hinterkante eines Schlanken Deltaflugels. Abh. Braunschweig, Wiss. Ges., Vol. 22, 1972, pp. 273–290.Google Scholar
  58. 58.
    Marsden, D.J.; Simpson, R.W.; Rainbird, W.J.: The Flow over Delta Wings at Low Speeds with Leading-Edge Separation. Cranfield College of Aeronautics. Rep. No. 114, 1957.Google Scholar
  59. 59.
    Hoeijmakers, H.W.M.; Vaatstra, W.: A Higher-Order Panel Method Applied to Vortex Sheet Roll-Up. AIAA Journal Vol. 21, No.4, 1983, pp. 516–523.ADSMATHCrossRefGoogle Scholar
  60. 60.
    Eriksson, L.E.; Rizzi, A.: Computation of Vortex Flow Around Wings Using the Euler Equations. Proc. 4th GAMM Conf. on Num. Meth. in Fl. Mech.,ed. H. Viviand, Vieweg Verlag, Paris, 1981, pp. 87–105.Google Scholar
  61. 61.
    Hitzel, S.M.; Schmidt, W.: Slender Wings with Leading-Edge Vortex Separation: A Challenge for Panel Methods and Euler Solvers, J. of Aircraft, Vol. 21, No. 10, 1984, pp. 751–759.CrossRefGoogle Scholar
  62. 62.
    Rizzi, A.: Euler Solutions of Transonic Flows around the Dillner Wing - Compared and Analyzed. AIAA Paper 84–2142, 1984.Google Scholar
  63. 63.
    Klopfer, G.H.; Nielsen, J.N.: Computational Fluid Dynamic Applications to Missile Aerodynamics. AGARD CP 336 Paper 3, 1982Google Scholar
  64. 64.
    Raj, P.: Computational Simulation of Free Vortex Flows Using an Euler Code. ICAS Paper 84–1.3.1, 1984.Google Scholar
  65. 65.
    Newsome, R.W.: A Comparison of Euler and Navier-Stokes solutions for Supersonic Flow over a Conical Delta Wing. AIAA Paper 85–0111, 1985.Google Scholar
  66. 66.
    Marconi, F.: Shock Induced Vortices on Elliptic Cones in Supersonic Flow. AIAA Paper 85–0433, 1985.Google Scholar
  67. 67.
    Rizzi, A.: Computation of Inviscid Incompressible Flow with Rotation, JFM, Vol. 153, 1985, pp. 275–312.ADSMATHCrossRefGoogle Scholar
  68. 68.
    Chang, J.L.C.; Kwak, D.: On the Method of Pseudo Compressibility, for Numerically Solving Incompressible Flows. AIAA Paper 84–0252, 1984.Google Scholar
  69. 69.
    Hoeijmakers, H.W.M.; Rizzi, A.: Vortex-Fitted Potential Solution Compared with Vortex-Captured Euler Solution for Delta Wing with Leading-Edge Vortex Separation. AIAA Paper 84–2144, 1984.Google Scholar
  70. 70.
    Rehbach, C.: Numerical Calculation of Three-Dimensional Unsteady Flow with Vortex Sheets. AIAA Paper 78–111, 1978.Google Scholar
  71. 71.
    Krause, E.; Shi, X.G.; Hartwich, P.M.: Computation of Leading-Edge Vortices. AIAA Paper 83–1907, 1983.Google Scholar
  72. 72.
    Fujii, K.; Kut1er, P.: Numerical Simulation of the Leading-Edge Separation Vortex for a Wing and Strake-Wing Configuration. AIAA Paper 83–1908, 1983, see also AIAA Paper 84–1550, 1984.Google Scholar
  73. 73.
    Rizetta, D.P.; Shang, J.S.: Numerical Simulation of Leading-Edge Vortex Flow. AIAA Paper 84–1544, 1984.Google Scholar
  74. 74.
    Luckring, J.M.: Theory for the Core of a Three-Dimensional Leading-Edge Vortex. AIAA Paper 85–0108, 1985.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • H. W. M. Hoeijmakers

There are no affiliations available

Personalised recommendations